FOAL 2005 Proceedings
Foundations of Aspect-Oriented Languages
Workshop at AOSD 2005

Curtis Clifton, Ralf Lammel, and Gary T. Leavens (editors)

TR #05-05
March 2005

Keywords: Aspect-oriented programming languages, aspects, pointcuts, advice, AspectJ, formal semantics, static
analysis, behavior, method call interception, program transformation, loops, LoopsAJ, context exposure, Real-Time
Specification for Java, RTSJ, scoped memory, program slicing, separation of concerns, crosscutting concerns, temporal
relations between events, predicates over execution traces, Aspectual Caml, type inference, polymorphism, curried
functions, around advice, proceed, type soundness.

2003 CR Categories: D.1.3 [Programming Techniques] Concurrent Programming—aparallel programming; D.1.m
[Programming Techniques] Miscellaneous—aspect-oriented programming, real-time programming; D.2.4 [Software
Engineering] Software/Program Verification—formal methods, correctness proofs; D.3.1 [Programming Languages]
Formal Definitions and Theory—semantics; D.3.2 [Programming Languages] Language classifications—object-oriented
languages, AspectJ; D.3.3 [Programming Languages] Language Constructs and Features—control structures, poly-
morphism; D.3.4 [Programming Languages] Processors—code generation, compilers, memory management; F.3.1
[Logics and Meaning of Programs] Specifying and verifying and reasoning about programs—Ilogics of programs; F.3.2
[Logics and Meaning of Programs] Semantics of programming languages—operational semantics, program analysis;

Each paper’s copyright is held by its author or authors.

Department of Computer Science
226 Atanasoff Hall
lowa State University
Ames, lowa 50011-1041, USA

http://www.cs.iastate.edu/FOAL

Contents
Preface e i

Message from the Program Committee Chair iii
David Walker (Princeton University)

Proving aspect-oriented programming laws L 1
Leonardo Cole (Federal University of Pernambuco, Brazil)
Paulo Borba (Federal University of Pernambuco, Brazil)
Alexandre Mota (Federal University of Pernambuco, Brazil)

Ajoin pointfor loopsin Aspectd 11
Bruno Harbulot (University of Manchester, UK)
John R. Gurd (University of Manchester, UK)

How to Compile Aspects with Real-Time Java 21
Pengcheng Wu (Northeastern University, USA)

Slicing AspectI Woven Code 27
Davide Balzarotti (Politecnico di Milano)
Antonio Castaldo D’Ursi (Politecnico di Milano)
Luca Cavallaro (Politecnico di Milano)
Mattia Monga (Universita degli Studi di Milano)

Back to the Future: Pointcuts as Predicatesover Traces o i i i i i 33
Karl Klose (Darmstadt University of Technology, Germany)
Klaus Ostermann (Darmstadt University of Technology, Germany)

Aspectual Caml: an Aspect-Oriented Functional Language 39
Hideaki Tatsuzawa (University of Toyko, Japan)
Hidehiko Masuhara (University of Toyko, Japan)
Akinori Yonezawa (University of Toyko, Japan)

MiniMAO: Investigating the Semanticsof Proceed, 51
Curtis Clifton (lowa State University, USA)
Gary T. Leavens (lowa State University, USA)

Expressiveness and Complexity of Crosscut Languages 63
Karl J. Lieberherr (Northeastern University, USA)
Jeffrey Palm (Northeastern University, USA)
Ravi Sundaram (Northeastern University, USA)

Preface

Aspect-oriented programming is a paradigm in software engineering and
programming languages that promises better support for separation of concerns.
The fourth Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Fourth International Conference on Aspect-Oriented Software De-
velopment in Chicago, USA, on March 14, 2005. This workshop was designed
to be a forum for research in formal foundations of aspect-oriented program-
ming languages. The call for papers announced the areas of interest for FOAL
as including: semantics of aspect-oriented languages, specification and verifi-
cation for such languages, type systems, static analysis, theory of testing, the-
ory of aspect composition, and theory of aspect translation (compilation) and
rewriting. The call for papers welcomed all theoretical and foundational studies
of foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:

e Make progress on the foundations of aspect-oriented programming lan-

guages.

e Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

e Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

e Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

FOAL logos courtesy of Luca Cardelli

The workshop was organized by Gary T. Leavens (lowa State University), Ralf Ldmmel (Microsoft Research), and
Curtis Clifton (lowa State University). The program committee was chaired by David Walker (Princeton University)
and included Walker, Lammel, Leavens, Jonathan Aldrich (Carnegie Mellon University), John Tang Boyland (Univer-
sity of Wisconsin, Milwaukee), Sophia Drossopoulou (Imperial College), Tzilla Elrad (lllinois Institute of Technol-
ogy), Kathleen Fisher (AT&T Labs—Research), Pascal Fradet (INRIA), Sam Kamin (University of Illinois), Shmuel
Katz (Technion-Israel Institute of Technology), Pertti Kelloméki (Tampere University of Technology), Shriram Krish-
namurthi (Brown University), David Lorenz (Northeastern University), Dave MacQueen (University of Chicago),
Hidehiko Masuhara (University of Tokyo), Oege de Moor (Oxford University), Greg Morrisett (Harvard University),
Peter D. Mosses (University of Wales, Swansea), James Riely (DePaul University), Henny Sipma (Stanford Univer-
sity), Kevin Sullivan (University of Virginia), and Mitchell Wand (Northeastern University). We thank the organizers
of AOSD 2005 for hosting the workshop.

http://www.cs.iastate.edu/FOAL

Message from the Program Committee Chair

This volume contains the papers presented at FOAL 05, the Workshop on Foundations of Aspect-Oriented Languages.
Beginning in 2002, the FOAL series of workshops has been a forum for discussion of the theory and principles behind
aspect-oriented programming language design and implementation. This year the conference was held in Chicago,
USA, on Monday, the 14th of March.

The call for papers solicited long papers (10 pages), short papers (6 pages) and very short papers (3 pages). This
year we received a total of 19 submissions of which 8 were long submissions, 10 were short submissions and 1 was
a very short submission. Each paper was reviewed by a minimum of three reviewers and many papers received four
or five reviews. After the initial reviews were submitted, the program committee discussed each paper during a 4-day
online program committee meeting held between February 6th and 9th. Papers for which a member of the program
committee was an author were held to a slightly higher standard than other papers. The final program includes 5
long submissions and 3 short submissions. The authors of long submissions spoke for 30 minutes with the audience
engaging in a 15 minute discussion afterwards. The authors of short submissions spoke for 20 minutes with the
audience engaging in a 10 minute discussion afterwards. In addition, we had a 45-minute panel session on ”Aspect-
Oriented Programming Languages and Modularity” with three panelists, selected by the FOAL organizers and myself,
each presenting different perspectives on the topic.

I am very grateful to the program committee for their diligent work reviewing all the submissions. | am also very
grateful to Shriram Krishnamurthi and Pete Hopkins for giving us access to the Brown Continue Server which we used
to administer the reviewing process. The Continue Server was a pleasure to use and it helped to relieve the burden of
managing reviews manually. Finally, the program organizers, Curtis Clifton, Ralf Ldmmel and Gary T. Leavens, made
my job as program chair simple and straightforward. | thank them for all their hard work organizing the details that
made this workshop possible.

Sincerely,
David Walker

FOAL 05 Program Chair
Princeton University

Proving aspect-oriented programming laws

Leonardo Cole*
Icn@cin.ufpe.br

Paulo BorbaT
phmb@cin.ufpe.br

Alexandre Mota
acm@ocin.ufpe.br

Informatics Center
Federal University of Pernambuco
P.O. Box 7851 - 50.732-970 Recife PE, Brazil

ABSTRACT

The proof of the behaviour-preserving property of program-
ming laws is not trivially demonstrated. It is necessary
to show that the programs, before and after the transfor-
mation, have the same behaviour. In this paper we show
how it is possible to prove that an aspect-oriented program-
ming law preserves behaviour; an operational semantics for
Method Call Interception is used. An equivalence relation
stating that two programs have the same behaviour is de-
fined. We use these concepts and discuss soundness for the
law Add-Before Ezecution.

Categories and Subject Descriptors

D.1 [Software]: Programming Techniques— A spect-Oriented
Programming; D.3.2 [Programming Languages|: Lan-
guage Classifications— A spectJ

General Terms

Languages

Keywords
Refactoring, AspectJ, Aspect-Oriented Programming, Sep-
aration of concerns

1. INTRODUCTION

In order to explore the benefits of refactoring [7, 17, 18],
aspect-oriented developers are identifying common transfor-
mations for aspect-oriented programs [16, 14, 10, 12], mostly
in AspectJ [13], a general purpose aspect-oriented extension
to Java [9]. However, they lack support for assuring that the
transformations preserve behaviour and are indeed refactor-
ings.

*Supported by CAPES.
TPartially supported by CNPq.

FAOL 2005 Chicago, USA

It is possible to use AspectJ programming laws [5] to de-
rive or create behaviour preserving transformations (refac-
torings) for a subset of this language. Programming laws
[11] define equivalence between two programs, given that
some conditions are respected. By applying and composing
those laws, one can show that an AspectJ transformation
is a refactoring. A refactoring denotes a behaviour preserv-
ing transformation that increases code quality. Contrasting
with a refactoring, a law is bi-directional and it does not al-
ways increase code quality, it is part of a bigger strategy that
does. Besides, the laws are much simpler than most refactor-
ings because they involve only localized changes, and each
one focuses on one specific AspectJ construct. The laws
form a basis for defining refactorings with confidence that
they preserve behaviour. Hence, soundness of the laws with
respect to a formal semantics is a necessary property.

This paper shows one way to prove that those aspect-oriented
laws indeed preserve behaviour. We use the semantics of
an aspect-oriented language [15] in which we can represent
part of the laws. This language is not as expressive as As-
pectJ, but provides mechanisms to define some kinds of As-
pectJ advices with a well defined semantics. It allows us
to explore notions of semantic equivalence between aspect-
oriented programs. This increases the confidence that the
transformations applied by the laws preserve behaviour. How-
ever, some hypothesis must be satisfied in order to enable
the laws proof. For instance, the programs can not use re-
flection and can not be concurrent. Those hypothesis are
also considered for object-oriented programming laws [4].

A limitation to our current work is a consequence of be-
ing able to represent only part of the laws with the chosen
semantics. As the chosen language is not as powerful as
AspectJ, we can represent Laws 3 - Add before-execution,
4 - Add before-call, 7 - Add after-execution returning, 13 -
Merge advices, 15 - Remove target parameter, and 14 - Re-
move this parameter. It would be necessary to define another
language (or extend the one we used) to prove the remain-
ing laws. Nevertheless, we can use this subset of the laws
to show that some important refactorings indeed preserve
behaviour, for instance, the Eztract Method Calls [14].

This paper is organized as follows. Section 2 discusses the
semantics used here and our notion of equivalence between
two programs. Section 3 introduces the laws, showing their
structure, preconditions and intent. Section 4 shows a for-

mal argumentation about soundness of one law. Then, we
discuss related work in Section 5 and conclude in Section 6.

2. SEMANTICS OF METHOD CALL INTER-
CEPTION (MCI)

Semantics for aspect-oriented languages is still en emerg-
ing field. The aspect-oriented languages used today still do
not have an associated formal semantics where it is possi-
ble to reason about programs. However, there are several
approaches [3, 1, 20, 15, 19, 6, 2] that try to solve this prob-
lem. In this section we discuss an aspect-oriented semantics
based on Method Call Interception (MCI) [15].

The MCI semantics was chosen because it allows us to rep-
resent several of the advice types offered by AspectJ. Hence,
allowing us to reason about programming laws involving
those kinds of advice. Moreover, the MCI semantics is
described as an extension to an object-oriented one, simi-
larly to the way AspectJ extends Java. Therefore, provid-
ing an easier comprehension of how the semantics change
from the object-oriented language to its aspect-oriented ex-
tension. This semantics only deals with advices, which we
consider as a core concept in aspect-orientation. However,
other AspetcJ constructs, such as inter-type declarations,
are also important and the proof for laws involving them
should consider a different or extended language.

Lammel starts defining the semantics for a small java-like
object-oriented language called ;O? [15]. He describes an
operational semantics and defines the rules for this language.
Although Lammel describes both static and dynamic seman-
tics, we consider only the dynamic semantics because we
want to compare behaviour of programs. The static seman-
tics is useful to verify if the programs are well constructed
according to the type system. Hence, the static semantics
would be necessary to proof that the laws relate valid pro-
grams, this is regarded as a future work.

After defining the semantics for ;0?, Lammel extends this
language to incorporate the new construct superimpose,
which allows the definition of an advice intercepting a me-
thod. However, the first definition for the superimpose con-
struct is very simple and was extended in two ways. First he
introduces interactivity, allowing advices to expose and use
variables from the method’s execution context. Second, he
extends the language definition including quantitative mech-
anisms, allowing a single advice to intercept several meth-
ods. The syntax for the resulting aspect-oriented language
can be seen in Figure 1. The MCI extension starts at the
caller definition.

The superimpose construct defines that some code (ezp) is
to be executed on the occurrence of an event (eve). Compar-
ing to AspectJ, the ezp can be regarded as the advice body,
and eve can be regarded as the pointcut expression. The
description of an event defines when and where a method
interception occurs. A method can be intercepted at three
distinct points (mci): dispatch, before its arguments evalu-
ation; enter, after the arguments evaluation but before the
method’s execution; and exit, after the method’s execu-
tion. Those mci points are analogous to the before-call,
before-execution and after-returning-execution from
AspectJ. The other component of an event (loc) describes

cdef™ cn.mn

class cn extends cn {field” mdef™}
type fn

type mn (arg™) body

cn | void

type vn

exp | abstract

class names

field names

method names

variable names

null

this

un

view type exp

exp.fn

erp.vn = erp

exp.mn (exp™)
super.mn (exp™)

let vn : type = exp in exp
exp;exp

while (exp) exp

caller

callee

superimpose erp on eve
mci loc | eve within loc
dispatch | enter | exit
*

prog
cdef
field
mdef
type
arg
body

fn
mn
un
exp

eve
mci
loc

object erp
class cn
subclass cn
method mn
result type
argument type vn
loc && loc

loc || loc

loc

Figure 1: MCI syntax

the location of the method interception, which is an expres-
sion that matches methods based on its name, class, argu-
ments, return type, etc. An event can also be constrained
to occur only within another location.

Lammel defines an operational semantics for this language
[15]. He defines several rules to show how an expression
should be evaluated. Each rule shows the return value of
the evaluated expression and shows how the state changes.
Some rules may depend on the the execution of other rules
to achieve its result. Hence, the evaluation of a program can
be represented as a tree showing several evaluation rules.

The domains for a rule consist of a method code table (T),
which links method names with its parameters and body.
An object store () that holds references to objects and its
field values. This object store also hold the advice registry.
There is also a reference to the executing object (#) and an
environment for the program variables (n). The expression
TI,(t) denotes the ith projection of a tuple .

Figure 2 shows the evaluation rule [15] for the superimpose
construct. This rule states that evaluating a superimpose
declaration returns a null reference (0 is the meaning of a
null expression) and updates the object store (X). The su-
perimpose evaluation consists of three steps: first, we eval-

uate the event expression (1), which yields the event de-
scription (k) and an updated object store (X'); second, we
create the advice, represented by « (2); finally, we call the
register helper function (3), which updates ¥’ by register-

ing the event and advice from the previous evaluations.

T,%,0,nF eve = k, %’ (1)
A a = ((Ien(0), Tmn (6)), exp) (2)
A register(Y k,a) = X" (3)

(4)

T,%,0,nt superimpose exp on eve = 0,%//
Figure 2: superimpose evaluation rule

We do not show all the evaluation rules, more details can
be found elsewhere [15]. As mentioned before, one of the
reasons to choose the MCI semantics is that it shows an
object-oriented semantics and extends it to introduce MCI.
This description allows us to see exactly how the semantics
change when we introduce aspect-oriented features to the
language. As the superimpose construct affects only method
calls, the only rule changed during the MCI extension is the
method call evaluation rule.

Originally a method call is evaluated according to the rule
listed in Figure 3. First, we evaluate the expression that
yields the object on which the method is being called (5).
Second, we search the environment for the method defini-
tion (6). Then, it is necessary to evaluate the expressions
representing the arguments values (7-9). Finally, an envi-
ronment is mounted with the evaluated arguments (10) to
execute the method’s body (11).

T,%0,0,nF exp = p, X1 (5)
AT (T) o (p,mn) = ((vna, ..., vny,), exp’) (6)
ANT,%1,0,nt expr = v1, 20 (7)
A (8)
AT, %, 0,0t expy, = vn, Xpt1 9)
AN =1 [vng = vi, ..., Uy — vy (10)
AT, Sni1,n Fexp = v,Snia (11)

(12)

T,%0,0,ntF exp.mn(ezp, ..., expn) = v, Ento

Figure 3: Object-oriented call evaluation rule

A general object reference is represented by p. The function
application is denoted as f e z, and the entirely undefined
function is denoted as L. The evaluation of a method call
yields its value (v") and an updated object store (X7, 5).

With the MCI extension, the call rule is changed to verify
at certain points, if there is a registered event that should
be executed. Figure 4 shows the call rule with the MCI
extension. The lookup for registered events matching this
method’s execution is done through the helper functions
dispatch (15), enter (20), and exit (22).

An event can be registered using the superimpose construct.
The lookup functions showed in the MCI call rule, search the

T,%0,0,nt exp = p, X1 (13)
AT (T) @ (p, mn) = ((vna, ..., vny), exp) (14)
A dispatch(T,¥1,0, (p, mn)) =) (15)
AT, Z1,0,nF expr = v1, 30 (16)
A (17)
AT, E,,0,nt expn = vn, Xny1 (18)
AN =L [ong = v,y ..., 0Ny > V) (19)
Aenter(T,Y,11,0, (p,mn),n") = 34 (20)
AT, 0, ((p,mn), L) F exp’ = v, X040 (21)
A exit(T,Sn12,0, (p,mn),n',v) = v %1, (22)

(23)

T,%0,0,nF exp.mn(expy, ..., expn) = v/, 50 5

Figure 4: MCI call evaluation rule

environment to see if the registered event matches the exe-
cuting method. If there is a match, the registered expression
is executed. Note that the superimpose must be evaluated
before the method call for the advice to take effect. Any
method calls made before the superimpose evaluation will
behave according to the pO? rule because the environment
will not have a registered event. This feature allows us to
dynamically introduce advices, which is not possible in As-
pectd.

As we want to map the MCI semantics to AspectJ, we need
to constrain the language to ensure that all superimpose ex-
pressions are evaluated before the program starts executing.
This can be achieved by allowing superimpose declarations
only at the beginning of the main method (method called
to initiate the program execution according to the language
grammar, see prog in Figure 1).

It is possible to represent part of the advice types provided
by AspectJ using the superimpose construct. In fact, we
can represent before-call, before-execution and after-
returning-execution advices. The first type maps to a
superimpose on dispatch construct, the other two can be
mapped to superimpose on enter and superimpose on exit
constructions, respectively.

Other AspectJ constructs, including pointcuts, inter-type
declarations, and other kinds of advice, can not be repre-
sented with the MCI semantics. This limitation enables us
to reason only about Laws 3 - Add before-ezecution, 4 - Add
before-call, 7 - Add after-execution returning, 13 - Merge ad-
vices, 15 - Remowve target parameter, and 14 - Remove this
parameter. In Section 4 we discuss the soundness of Law 3
- (Add Before-Execution). To enable the proof of the other
laws, it would be necessary to extend the showed language,
or to define a completely new one. This is regarded as a
future work.

2.1 MCI Program Equivalence

We want to use the MCI semantics to reason about aspect-
oriented programs and verify whether two programs behave
the same. Thus, it is necessary to define an equivalence
relation between them. This equivalence relation can be

difficult to define. For instance, if we choose an equivalence
relation that compares two environments (states) resulting
from programs execution, it would fail to compare programs
that behave the same but use different data structures. Dif-
ferent data structures may result in different environments
at the end of a program execution. For example, consider
two stack implementations: the first uses an array to repre-
sent the stack, and the second uses a linked list. Both im-
plementations may behave as a stack, but their final states
are different because their data structures are different. In
this case, it would be necessary to isolate input and out-
put variables from the environment and compare only those
variables.

As the programming laws we are willing to proof, with the
MCI semantics, do not change the data structure, we can es-
tablish equivalence by comparing the object stores generated
by the evaluation of both programs. Figure 5 shows the ob-
ject store (X) domain to evaluate an expression [15]. This
domain has three components: a function that associates
data locations with their values (§ —pn v), a function that
associates object references with their types (p —fin cn),
and the advice registry (Z) Our equivalence notion only
uses the first component of the object store comparing the
field values and how they change, as stated by Definition 1.

Y = §—finv (Object store)
X p—fn cn (Runtime type information)
x A (Advice registry)
0 = pxfn (Data locations)
p (Object references)

Figure 5: Object Store

DEFINITION 1 (PROGRAM EQUIVALENCE). Let P and Q
be two MCI programs. P is equivalent to Q (P = Q) iff, for
all valid input, the fields and their values from the resulting
object store of P equals that of Q.

We are only interested in the first component from the ob-
ject store, which maps field locations to their values. Thus,
after the programs evaluation we can compare the values of
their fields and state that two programs behave the same if
all their fields and values are equal. The runtime type infor-
mation is not relevant to our relation, it is part of the object
store to allow the evaluation of expressions like type casts.
The advice registry is expected to change because we intend
to introduce new superimpose commands to the program.

This equivalence notion is rather strong. It may distinguish
two programs even if they have the same behaviour. The
stack implementations using an array or a linked list would
be different programs according to our definition. This is not
a problem because two programs that are equivalent accord-
ing to our definition, would also be equivalent using a more
precise definition. Besides, our definition is the simplest so-
lution suitable to our goals. Also, note that we are interested
on the external behaviour of a program. Hence, our defini-
tion deals with closed programs and not with equivalence of
classes. For instance, a method never called by a program do
not influence the equivalence notion because its behaviour
do not contribute to the external program behaviour.

Although we define the equivalence relation for MCI, this
notion is independent of programming languages. However,
this equivalence relation can only be considered for sequen-
tial programs. If the programs are concurrent, the equiva-
lence relation should consider the structure of the evaluation
tree as well. Nevertheless, our laws do not deal with those
mechanisms.

3. LAWS

Sometimes, modifications required by refactorings are diffi-
cult to understand as they might perform global code changes.
We use programming laws [5] to increase the confidence that
an AspectJ transformation preserves behaviour. The laws
are much simpler than most refactorings because they in-
volve only localized changes, and each one focuses on one
specific AspectJ construct. The laws form a basis for defin-
ing refactorings with confidence that they preserve behaviour.

In this section we describe a simple law, showing its intent,
structure, and preconditions. The laws establish the equiv-
alence of AspectJ programs given that some restrictions are
respected. Therefore, the structure of each law consists of
three parts: left-side, right-side and preconditions. The first
two are templates of the equivalent programs. The third
part indicates conditions that must hold to ensure the equiv-
alence is valid. For example, the following law is useful to
extract code from the beginning of a method into an aspect.
If the extracted code is spread through several methods, we
would apply the law several times to isolate this code. Af-
terwards, we would use another law to merge the resulting
advices, increasing reuse.

Law 3. Add Before-Execution

ts
class C {
ts fs
class C { ms
s T m(ps) {
ms body
T m(ps) { }
body';
body paspect A {
) = | pes
bars
paspect A { before(context) :
pes exec(o(C.m)) &&
bars bind(context) {
afs body' [cthis /this]
}
afs
}

provided

(—) body’ does not declare or use local variables;
body’ does not call super;

(<) body’ does not call return;

(«») A has the lowest precedence on the join
points involving the signature o(C.m);

The laws basically represent two transformations, one apply-
ing the law from left to right and another one in the opposite
direction. Each law has preconditions to ensure that the pro-
gram is valid after the transformation and preconditions to
ensure that the transformation preserves behaviour. When
applied from left to right, this law moves part of a method’s
body into an advice that is triggered before method execu-
tion.

We denote the set of class and aspect declarations by ts,
and the set of field declarations and method declarations by
fs and ms, respectively. We also abstract the privileged
modifier from AspectJ as priv. The set of pointcut decla-
rations is denoted as pcs. Note that the advices can not be
considered as a set, since order of declaration dictates prece-
dence of advices. According to the AspectJ semantics, if two
advices are after, the one declared later has precedence, in
every other case, the advice declared first has precedence.
Thus, we divide the list of advices in two. The first part
(bars) contains the list of all before and around advices,
while the second part contains only after advices (afs).
This separation ensures that after advices always appear
at the end of the aspect. It also allows us to define exactly
the point where the new advice should be placed to execute
in the same order in both sides of the law. Additionally, for
advices declared in different aspects, precedence depends on
their hierarchy or their order in a declare precedence con-
struct.

Inside advices, we can access variables in the context of
the captured join point. The law always expose the max-
imum context available, in this case, the executing object
(this(cthis)) and the method parameters (args(ps)). The
expression bind(context) includes those pointcut designators
for exposing context. We omit visibility modifiers, throws
clauses and inheritance constructs for simplicity. However,
there are similar laws that include the variations of visibility
modifiers, exceptions and inheritance constructs.

Examining the left hand side of Law 3, we see that body’ exe-
cutes after all before advices declared for this join point. It
also executes after all the around advices, intercepting this
join point, call proceed. This means that the new advice
on the right hand side of the law should be the last one to
execute, preserving the order in which the code is executed
in both sides of the law. Thus, the before advice should
be placed after the list of before and around advices, but
before the list of after advices. Moreover, to ensure that
the new advice created with Law 3 is the last one to execute,
we have a precondition stating that aspect A has the lowest
precedence over other aspects defined in ts. This precondi-
tion must hold in both directions.

As we move body’ to the aspect, its visible context changes.
Hence, it is necessary to constrain the context dependencies
in order to guarantee that the law relates valid AspectJ pro-
grams. Therefore, we impose conditions on accessing private
members, local variables (not including the methods argu-
ments) and calls to super. While the last two are forbidden,
access to private members is allowed if done through this.
This is necessary to enable the mapping of accesses to the
object referenced by this, to the object exposed as the exe-

cuting object on the advice (cthis). The mapping is denoted
by the expression body’[cthis/this], where we substitute all
occurrences of this for the variable cthis in body’.

However, there are other implications that must be con-
sidered. Changes to the method execution flow (calls to
return) are generally not allowed because the advice can-
not implement it, or it would increase complexity. This
precondition is necessary to ensure that the law preserves
behaviour.

Other laws are similarly defined in terms of transformations
and preconditions, and establish properties of other con-
structs besides before advice. Table 1 shows a summary
of the laws. More details about AspectJ programming laws
can be found elsewhere [5].

4. SOUNDNESS OF THE ADD BEFORE-EXE-

CUTION LAW
In this section we show that the Law 3 (Add Before-Ezecu-
tion) is sound using the semantics we chose. We interpret
both sides of the law according to the semantics. Then we
compare the resulting environments according to our equiv-
alence notion to see whether the two sides of the law have
the same meaning.

Following, we show the Law 3 written in terms of the MCI
syntax. Thus, we map the before-execution advice from
AspectJ to a superimpose on enter construct from the MCI
language (see Section 2). Also, we constrain the language
allowing only declarations of the superimpose construct at
the beginning of the main method. Moreover, the MCI lan-
guage does not have any modular concept similar to an as-
pect. Thus, the aspect simulation is also accomplished by
the use of a main method with superimpose declarations
at the beginning. As a consequence, changes made to the
aspect are represented as changes made to the main method
and its superimposes. Note that, similarly to the AspectJ
law, we have to substitute the this keyword for the callee
keyword when using body’ on the right hand side of the law.

Law 3. Add Before-Execution (MCI)

ts
class C ext T {
ts fs
class C ext T { ms
fs Type m(ps) {
ms body
Type m(ps) { }
body’;
body class M ext T {

} -

void main() {
superimpose body’

class M ext T { on enter

void main() { class C &&
$i; method m &&
mainBody argument ps;

} sis;

} mainBody

Table 1: Summary of laws

Law | Name Law | Name

1 Add empty aspect 16 Remove argument parameter

2 Make aspect privileged 17 Add catch softened exception

3 Add before-execution 18 Soften exception

4 Add before-call 19 Remove exception from throws clause
5 Add after-execution 20 Remove exception handling

6 Add after-call 21 Move exception handling to aspect

7 Add after-execution returning successfully | 22 Move field to aspect

8 Add after-call returning successfully 23 Move method to aspect

9 Add after-execution throwing exceptions 24 Move implements declaration to aspect
10 Add after-call throwing exceptions 25 Move extends declaration to aspect

11 Add around-execution 26 Extract named pointcut

12 Add around-call 27 Use named pointcut

13 Merge advices 28 Move field introduction up to interface
14 Remove this parameter 29 Move method introduction up to interface
15 Remove target parameter 30 Remove method implementation

There is also the advice ordering problem discussed in Sec-
tion 3. According to our understanding from the MCI se-
mantics, advices declared later have precedence, no matter
the kind of MCI. Thus, we do not need to separate ad-
vices as we do with AspectJ. It is only necessary to de-
clare the new superimpose on enter, just before all the
other superimpose declarations (sis) to ensure that the new
one is the last to be executed. If we were dealing with
Law 7 (Add after-execution returning successfully), the new
superimpose declaration should be placed after all the exist-
ing ones to ensure that the after advice should be the first
to execute. We assume that the kind of rewriting discussed
so far, does not change the semantics of Law 3.

In Section 2 we showed that there is just one evaluation rule
that changes with the MCI extension. Thus, our soundness
discussion involves only the call rule. A complete proof
would involve all the language constructs and use induction
on the structure of mainBody. The base case would consider
each single command that can appear in mainBody, while
the induction step would consider every composition of those
commands. This complete proof is regarded as a future
work, here we provide a formal argumentation to show that
Law 3 is sound.

Our argumentation is based on a case where the mainBody
represents a single call to method m of class C' (note that
we need to create an object, using the let construct, to
call a method). This comes directly from the fact that the
superimpose only affects the method call semantics. Any
other simple construction for mainBody would trivially pre-
serve behaviour because the other language constructs are
not affected by the superimpose.

Figure 6 shows the evaluation tree for the left hand side of
the law, considering that mainBody is the command: let c :
C =new C in c.m(ps). Every node consists of a program
state. The transitions represent applications of transition
rules according to the semantics. Thus, each transition is
labeled after the applied rule. Also, the left square represent
the input object store and the right square represents the
output object store for each rule applied. The nodes are
numbered according to the execution order, with label L1
being the first.

il 135
t i)
[eval advice [eval body’] [eval body] M E
S B B
A[eval ps] A[enter] [seq]

[eval advice]

LS
[call C.m]
FlLA)

[let]

i] [seq]
call M.main
L1

Figure 6: Evaluation tree for the left hand side.

[superimpose]

The left hand side consists in evaluating a sequential compo-
sition (L2), which leads to the evaluation of the superimpose
declarations present in sis (L3) and the evaluation of the let
command (L4). The let updates the store and calls method
m of class C (L5). The method call evaluation occurs as
showed in Figure 4. First, events registered for dispatch
MCT are executed (L7). Next we evaluate the method’s pa-
rameters (L8). Then, events registered for enter MCI are
executed (L10). Following we evaluate the method’s body,
which is a sequential composition (L11) of body’ (L12) and
body (L13). Finally, events registered for exit MCI are
executed (L15). As we want to compare the execution of
two programs, we do not expand execution nodes that are
equal for both. For instance, the evaluation of body, body’,
ps, dispatch and exit advice nodes are the same for both
programs.

Next, Figure 7 shows the evaluation tree for the right hand
side of the law. In this case, there is a sequential composi-
tion(R2) that first evaluates another sequential composition
(R3), which includes our new superimpose (R4) and the old
ones (R5). Then it starts the program similarly to the left
hand side. The evaluation of the superimpose command
updates the registry located on the object store by regis-

tering body’ to be executed when entering the method m
with arguments ps of class C. As a result, the evaluation of
the enter helper function (R11) performs a lookup in the
registry for events registered for this method and finds that
body’ should be executed (R12). Another difference is that
the evaluation of the method’s body now includes only body

(R14).
[eval advice]

[eval advice]

‘[dispatch]

[eval body’]

& [eval advice]

[exit]

[seq]
[call M.main] E@

Figure 7: Evaluation tree for the right hand side.

Proof. (Sketch) According to the equivalence notion es-
tablished in Section 2.1, we are interested on the nodes that
may update the first component of the object store (field val-
ues). First, the let command may update the object store
by adding a new object and the values of its fields. The
second way to update the field values in the object store
is through an assignment. Assignments can appear in any
expression and thus, we look for the nodes able to evaluate
expressions.

On the left hand side, the nodes related to the evaluation
of expressions are: let (L4), dispatch (L7), ps (L8), enter
(L10), body’ (L12), body (L13), and exit (L15). Similarly,
the nodes we are interested on the right hand side are: let
(R6), dispatch (R9), ps (R10), enter (R12), body’ (R13),
body (R14), and exit (R16).

Analyzing the equivalent nodes from both programs (i.e. L4
and R6, L7 and R9, etc) we can see they are syntactically
equal, and thus have an equivalent evaluation. The only
factor that may result in different field values at the end of
the program execution is the order in which the nodes are
evaluated. In both Figures 6 and 7, the number inside the
node represent the order of evaluation, which is the same in
both programs. During the evaluation, the field values are
supposed to be equal after the evaluation of nodes L13 and
R14. Thus, according to our equivalence notion, and con-
sidering that the programs are sequential, we can conclude
that the programs have the same behaviour. B

4.1 Soundness of Other Laws

This proof could be similarly extended for Laws 4 (Add
before-call), and 7 (Add after returning successfully). As
they only differ by the kind of advice (MCI) used. Law
4 would use the superimpose on dispatch construct and
Law 7 would use the superimpose on exit construct. For
this reason, we consider that this two laws are also sound.

The right hand side of Law 4 would generate an evalua-
tion tree where body’ is evaluated before some other method
call. This means that body’ is evaluated even before the ar-
guments of the method to be called. The evaluation tree
for the left hand side would place body’ above the dispatch
node, ensuring that it is also evaluated before the arguments
of the considered method.

The proof for Law 7 is almost equal to the proof for Law 3.
The only difference is that on the evaluation tree for the left
hand side, body’ appears after body, and on the right hand
side, body’ appears above the exit node. This also ensures
that body’ is evaluated after body in both sides of the law.

However, Laws 13, 14, and 15 should be considered differ-
ently. The proof for Law 13 would rely on the composition
of MCI locations (|| operand on event locations) to ensure
that a registered event matches two or more join points.
As the only difference between the left hand side and right
hand side is the superimpose declarations (consequently the
registry), both evaluation trees would be equal. According
to the MCI semantics, the evaluation of the || operator is
the same as evaluating its first operand an then its second
operand. Both evaluations register the same piece of code
to execute at different events.

The proof for Laws 15 and 14 would rely on removing the
callee and caller constructs respectively. In the MCI se-
mantics, these constructs only bind variables to be used by
the advice, they do not constrain the types as occurs with
this and target in AspectJ. As type restrictions are apart
from variable binding, we can remove the variable binding
given that the variable is not used inside the advice.

We do not discuss the remaining laws formally. As most laws
are very simple and intuitive, since each one deals with one
construct at a time, their description provides informal ar-
guments describing why the two sides of the laws are equiva-
lent. Hence, we generally described how to map an AspectJ
construct to its corresponding Java implementation. More-
over, some laws when applied from right to left, perform a
transformation very similar to the transformation applied
by the AspectJ compiler to weave aspects and classes.

5. RELATED WORK

This paper uses an existing operational semantics for Method
Call Interception [15] to represent aspect-oriented program-
ming laws and reason about them. It seemed appropriate to
choose this semantics because of its simplicity, its model of
extending an object-oriented language, and its capacity to
represent several types of advices from AspectJ.

However, there are other approaches for reasoning about
aspect-oriented programs. It would be difficult to represent
the laws using most of them. Douence et. al. [6] define a

domain-specific language, along with its semantics, to de-
fine crosscuts based no execution monitoring. His system is
based on events similarly to the Observer [8] pattern.

Andrews [2] presents process algebras as a formal basis for
aspect-oriented languages. He uses a subset of CSP tailored
to his purpose, representing join points as synchronization
sets. He also defines an equivalence notion between pro-
grams and uses it to show the correctness of his weaving
process. He uses an imperative language. We use the MCI
semantics because it is much simpler and extends the seman-
tics of an object-oriented language just as AspectJ extends
Java.

Wand et. al. [19] define a semantic model for dynamic join
points. This is not appropriate to our purpose because we
needed a semantics in which we could represent AspectJ fea-
tures. Xu et. al. [20] use a reduction strategy to transform
aspect-oriented programs to implicit invocation. This trans-
formation allows them to reason about the programs using
already defined semantics for implicit invocation. Aldrich [1]
discusses the problem of modular reasoning about aspect-
oriented programs. He defines an aspect-oriented language
and associated semantics where modular reasoning is possi-
ble. Finally, Barzilay et. al. [3] examine call and execution
semantics in AspectJ and their interaction with inheritance.

There is also a related work [4] that includes the definition of
object-oriented programming laws, an associated semantics,
an equivalence notion, and soundness of the laws. Besides,
they also prove the relative completeness of their set of laws
by defining a normal form and a reduction strategy to trans-
form any program into the normal form.

Hanenberg, Oberschulte and Unland [10] propose some pre-
conditions to apply an object-oriented refactoring in the
presence of aspects. Those conditions guarantee a mapping
of join points during refactoring, therefore preserving be-
haviour. They also propose modifications to refactorings
such as FEztract Class [7] in order to make them aspect-
aware and therefore respect the preconditions. The second
part of Hanenberg, Oberschulte and Unland’s research re-
gards refactorings to AspectJ. In fact, they propose some
new refactorings from Java to AspectJ. However, they only
discuss the refactoring as a whole and the conditions to ap-
ply the refactoring. We not only define preconditions but
we are able to prove that our transformations preserve be-
haviour. We also derived the proposed refactorings using
the laws, showing that they preserve behaviour.

Analogously, Iwamoto and Zhao [12] proposes modifications
to existing refactorings in order to make them aspect-aware.
However, it is a superficial discussion. They only show some
examples and give some guidelines on how to avoid the as-
pect effects on the object-oriented refactorings. They also
show examples of refactorings from Java to AspectJ. Al-
though, there is no argumentation about necessary condi-
tions to apply the refactorings to ensure that they preserve
behaviour. We used the suggested refactorings and derived
them as a composition of laws. Hence, we were able to state
in which conditions we can apply the refactorings as well.

Finally, there is a related work [14] that discusses aspect-

oriented refactorings showing problems when applying object-
oriented refactorings in the presence of aspects. It proposes

several complex and interesting refactorings and shows clear

and easy to understand examples. The laws we are able

to prove with the discussed semantics are enough to prove

some of his refactorings, for instance the Extract Method

Calls refactoring.

6. CONCLUSIONS

This paper is a complement to another work on aspect-
oriented programming laws [5]. The previous work relied on
the simplicity of the laws, which involve only local changes
and deal with one AspectJ construct each. Here we show
that the laws can be proved sound according to a formal
semantics. We show that specifically Law 3 (Add Before-
Ezecution). However, other five laws could be chosen.

For that, we use an operational semantics for Method Call
Interception [15] where we could represent some of the laws.
We also defined an equivalence relation stating the condi-
tions in which two programs behave the same. The proof
is based on the evaluation of both programs and then, the
analysis of the resulting environments comparing the values
of object fields.

However, we can not prove all the laws using this semantics.
The MCI semantics is able to represent only before-call,
before-execution and after-execution returning advices
from AspectJ. Thus, we can only reason about the laws re-
lated to those advices. To enable the proof of the remaining
laws, we should define a completely new language, along
with its semantics, including all the AspectJ constructs cov-
ered by the laws. Another solution would be to extend an
existing language (i.e MCI) to incorporate the missing con-
structs. Our current solution allows the proof of Laws 3
- Add before-execution, 4 - Add before-call, 7 - Add after-
ezecution returning, 13 - Merge advices, 15 - Remove target
parameter, and 14 - Remove this parameter. The proof of
other laws is regarded as a future work.

7. ACKNOWLEDGMENTS

We would like to thank Rohit Gheyi and the other Software
Productivity Group members who contributed with com-
ments and suggestions. We also would like to thank the
anonymous referees for making several suggestions that sig-
nificantly improved our paper. This work was supported by
CAPES and CNPq, both are Brazilian research agencies.

8. REFERENCES
[1] J. Aldrich. Open Modules: A proposal for Modular
Reasoning In Aspect-Oriented Programming. In
C. Clifton, R. Lammel, and G. T. Leavens, editors,
FOAL’04 Proceedings: Foundations of Aspect-Oriented
Languages Workshop at AOSD 2004; Technical Report
CS Dept., Iowa State Univ., Mar. 2004.

[2] J. H. Andrews. Process-algebraic foundations of
aspect-oriented programming. In REFLECTION ’01:
Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting
Concerns, volume 2192, pages 187-209.
Springer-Verlag, Sept 2001.

B8l

(4]

[5

[7]

(8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

O. Barzilay, Y. Feldman, S. Tyszberowicz, and

A. Yehudai. Call and Execution Semantics in AspectJ.
In C. Clifton, R. Lammel, and G. T. Leavens, editors,
FOAL’04 Proceedings: Foundations of Aspect-Oriented
Languages Workshop at AOSD 2004; Technical Report
CS Dept., Iowa State Univ., Mar. 2004.

P. H. M. Borba, A. C. A. Sampaio, A. L. C.
Cavalcanti, and M. L. Cornelio. Algebraic reasoning
for object-oriented programming. Science of Computer
Programming, January 2004.

L. Cole and P. Borba. Deriving Refactorings for
AspectJ. In Proc. of the 4th International Conference
on Aspect-Oriented Software Development (AOSD
2005), Chicago, USA, Mar. 2005. ACM Press. To
appear.

R. Douence, O. Motelet, and M. Sudholt. A formal
definition of crosscuts. In REFLECTION ’01:
Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting
Concerns, volume 2192, pages 170-186.
Springer-Verlag, Sept 2001.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison—Wesley, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object—Oriented Software. Addison—Wesley, 1994.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison—Wesley, second
edition, 2000.

S. Hanenberg, C. Oberschulte, and R. Unland.
Refactoring of aspect-oriented software. In 4th Annual
International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and
Applications for a Networked World (Net.ObjectDays),
pages 19-35, Erfurt, Germany, Sept. 2003.

C. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W.
Roscoe, J. W. Sanders, 1. H. Sorensen, J. M. Spivey,
and B. A. Sufrin. Laws of programming. Commun.
ACM, 30(8):672-686, 1987.

M. Iwamoto and J. Zhao. Refactoring aspect-oriented
programs. In F. Akkawi, O. Aldawud, G. Booch,

S. Clarke, J. Gray, B. Harrison, M. Kandé, D. Stein,
P. Tarr, and A. Zakaria, editors, The 4th AOSD
Modeling With UML Workshop, 2003.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. Getting Started with
Aspect]. Communications of the ACM, 44(10):59-65,
October 2001.

R. Laddad. Aspect-Oriented Refactoring Series.
TheServerSide.com, Dec. 2003.

R. Lammel. A Semantical Approach to Method-Call
Interception. In G. Kiczales, editor, Proc. of the 1st
International Conference on Aspect-Oriented Software
Development (AOSD 2002), pages 41-55, Twente, The
Netherlands, Apr. 2002. ACM Press.

(16]

(17]

(18]

(19]

20]

M. Monteiro and J. Fernandes. Towards a Catalog of
Aspect-Oriented Refactorings. In 4th International

Conference on Aspect-Oriented Software Development
(AOSD 2005), Chicago, USA, Mar. 2005. ACM Press.

W. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, Urbana-Champaign, IL, USA, 1992.

D. Roberts. Practical Analysis for Refactoring. PhD
thesis, Urbana-Champaign, IL, USA, 1999.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In G. T. Leavens and R. Cytron,
editors, FOAL 2002 Proceedings: Foundations of
Aspect-Oriented Langauges Workshop at AOSD 2002,
number 02-06 in Technical Report, pages 1-8.
Department of Computer Science, Iowa State
University, Apr. 2002.

J. Xu, H. Rajan, and K. Sullivan. Aspect Reasoning
by Reduction to Implicit Invocation. In C. Clifton,

R. Lammel, and G. T. Leavens, editors, FOAL’0/
Proceedings: Foundations of Aspect-Oriented
Languages Workshop at AOSD 2004; Technical Report
CS Dept., lIowa State Univ., Mar. 2004.

10

A join point for loops in AspectJ

Bruno Harbulot
bruno.harbulot@cs.man.ac.uk

John R. Gurd
jgurd@cs.man.ac.uk

Centre for Novel Computing, School of Computer Science,
University of Manchester, Oxford Road, Manchester M13 9PL, UK

ABSTRACT

The current AspectJ join points represent locations in the
code that are at the interface of the Java objects. However,
not all the “things that happen”! happen at the interfaces.
In particular, loops are a key place that could be advised
for parallelisation. Although parallelisation via aspects can
be performed in certain cases by refactoring the Java code,
it is not always possible or desirable. This article presents a
model of loop join point, which allows AspectJ to intervene
directly in loops.

The approach used for recognising loops is based on a
control-flow analysis at the bytecode level; this avoids am-
biguities due to alternative forms of source-code that would
effectively produce identical loops. This model is also embel-
lished with a mechanism for context exposure, which is piv-
otal for giving a meaning to the use of this join point. This
context exposure is particularly useful for writing pointcuts
that select specific loops only, and the problem of loop se-
lection is also presented in the paper.

Finally, LoopsAJ, an extension for the abc compiler that
provides AspectJ with a loop join point, is presented. It
is shown how to use this extension for writing aspects that
parallelise loops.

1. INTRODUCTION

When parallelising code in order to improve performance,
loops are the natural places to make changes. There are
sometimes several alternative ways of parallelising the same
loop, depending on various parameters, such as the nature
of the data being processed, or the architecture on which the
application is going to be executed. In certain cases, it is
possible to use aspects for parallelising loops, in particular
for choosing a method of parallelisation [3]. However, since
there is currently no join point for loops in AspectJ [5], the
method proposed in [3] resorts to refactoring the base-code.
In order to eliminate this inconvenience, this paper proposes

!(to use the AspectJ guide phrasing for introducing the con-
cept of join point).

Foundations Of Aspect-oriented Languages workshB@ AL 2005),
held in conjunction withA OSD 2005 in Chicago, USA.
Copyright retained by the authors.

11

a loop join point model for AspectJ which allows direct par-
allelisation of loops, without refactoring of the base-code.

Section 2 presents a formal definition of the loop join point
model. This includes the definition of a loop and the way
it can be identified. Although this approach is based on
Java and AspectJ, the model can potentially be applied to
other languages. Section 3 embellishes the loop join point
model with a relation to the data handled by the loops.
Section 4 explains the specific requirements for loop selec-
tion, and describes the associated difficulties, compared with
other kind of join points. Section 5 introduces LoopsAJ, a
prototype implementation of a weaver capable of handling
the loop join point model, based on abc [2].Section 6 shows
how to write aspects for parallelisation using the loop join
point. Section 7 describes some of the problems related to
base-code containing exceptions. Section 8 briefly intro-
duces ideas about other potential fine-grained join points:
a “loop-body” join point and an “if-then-else” join point.
Finally, Section 9 concludes.

2. LOOP JOIN POINT MODEL

This section presents the definition of a loop join point
model. It could be applied to various aspect-oriented sys-
tems, but the presentation focusses on the approach used in
AspectJ. Section 2.1 describes the general approach used to
recognise loops in the code. Section 2.2 gives a summary of
compiler theory related to loop recognition. Finally, in Sec-
tion 2.3, the definition of a loop is progressively restricted
in order to build a model suitable for a join point.

The first step is to identify what the shadow of the loop join
point is. The shadow of a join point is defined as follows:
“[A] join point is a point in the dynamic call graph of a
running program [...]. Every [such] dynamic join point has
a corresponding static shadow in the source code or bytecode
of the program. The AspectJ compiler inserts code at these
static shadows in order to modify the dynamic behavior of
the program” [4]. The main elements required for a join
point shadow are:

e a weaving point for before-advice,

e a weaving point (or maybe several points) for after-
advice, and

e the eventual ability to weave around-advice.

Then, for the dynamic part, the model should make it pos-
sible to extract information regarding the execution context
at the join point.

2.1 From source or from bytecode

The first decision to be made is whether the join point is
recognised at source code level or at bytecode level. The
way loops are programmed in Java is not necessarily directly
reflected in the generated bytecode. For example, instinc-
tively, most Java programmers would consider the body of
a for-loop to be the lines of code within the curly brack-
ets following the for(;;) statement. However, a loop with
the same effect can also be written in different ways, for ex-
ample as a while-loop, or with some of the for statements
displaced, as shown in Figure 1.

for (int i = 0 ; i++) {

/* A */

i < MAX ;
}

int j = 0 ;

int STRIDE = 1 ;

for (; j < MAX ;
/*x A */

j += STRIDE) {
}

int k = 0 ;
while (k < MAX) {
/* A */

k++

Figure 1: Simple examples of equivalent loops.

In addition, the main conditional expression of a loop may
encompass several instructions, in particular if it involves
a call to a method or a complex expression, as shown in
Figure 2. Although the condition may not seem to be part of
the loop body, it could always be refactored so as to be part
of it (for example through a temporary boolean variable).
Moreover, the compiled code does not necessarily reflect the
way a complex expression has been written in the source
code.

int i = 0 ;
while (condition(i) ||
/*x A */

i++

(i>10)) {

}

int j = 0 ;

boolean ok =

while (ok) {
/% A */
j++
ok =

condition(j) |l (j>10) ;

H

condition(j) || (j>10) ;

Figure 2: Loop with more complex conditions.

Since the main concern is to recognise the behaviour of the
code, rather than the way it was written, the choice was
made to base the representation of loops at the bytecode
level rather than at the source code level. As a result, the
representation is more robust to variations in programming
style. However, this choice introduces limitations regard-
ing (a) the potential specific handling of abrupt exit (see
Section 2.4), and (b) the nature of the control-flow graphs.
Indeed, as explained in more detail in Section 7, the model

12

expects a reducible (or well-structured [1, 10]) graph. When
exceptions are not used, Java source-code produces bytecode
with reducible control-flow graphs, but this is not necessarily
the case for bytecode produced by other means.

2.2 Dominators, back edges and natural loops
The initial approach for finding loops in the control-flow
graph follows the method described in [1, 10]. This method
is based on finding dominators and back edges, defined as
follows: “Node d of a flow graph dominates node n [...] if
every path from the initial node of the flow graph to n goes
through d. [... The] edges in the flow graph whose heads
dominate their tails [are called] back edges. (If a — b is an
edge, b is the head, a is the tail.) [... Also, a is a predecessor
of b, and b is a successor of a ...] Given a back edge n —
d, we define the natural loop of the edge to be d plus the set
of nodes that can reach n without going through d. Node d
is called the header of the loop” [1].

Figures 3(a) and 3(b) represent, respectively, the (block-
level ?) control-flow graph and the associated dominator tree
for the simple for-loop shown in Figure 1. In this example,
the only back edge is 3 — 2, and its natural loop comprises
blocks (nodes) 2 (which is the header) and 3.

if (1<MAX)

® @
(@) (b)

Figure 3: Control-flow graph (a) and dominator tree (b) for
a simple for-loop.

Natural loops can be confusing because there could be sev-
eral loops with the same header. Asshown in Figure 4, what
appears to be a single loop actually corresponds to two nat-
ural loops sharing the same header. In such a case, defining
the points immediately before or after a natural loop would
be ambiguous. Therefore, instead of using natural loops for
the join point model, the union of all the natural loops shar-
ing the same header is considered as a single combined loop.
To avoid ambiguous cases, implementations should consider
a node containing only an unconditional goto as the same
node as its successor node. In the remainder of this article,
the term “loop” will be used to mean a “combined loop”,
unless otherwise stated.

Following this style, an inner loop is a loop whose blocks
are all contained within another loop, but do not share the
latter’s header. This also happens to match the natural
definition of inner loops at the source level.

In the following sections, three categories of loops are pre-
sented, together with their characteristics pertinent to pos-
sible use as join points. The categories introduce increasing

%i.e., the nodes of the control-flow graph are basic blocks [1]
of code statements.

int i = 0 ;
while (i<MAX) {
if (cond(i++)) {
/* A %/
} else {
/% B */
}

@

if (i<MAX)

)

* B x/

Y
return;

* D Kx/

Figure 4: Two natural loops with the same header.

degrees of constraint which affect their ability to weave the
three forms of advice: before, after and around.

2.3 Loops in the general case

A loop always has a unique entry point, namely its header.
Before-advice can therefore be woven in a pre-header, that
is, a node (block) inserted before the header to which the
jumps from outside the considered loop are redirected, but
the jumps from inside it are not (see Figure 5).

\/

header -

\\\\\;4/////

pre-header

— ¢

header (-

Figure 5: Insertion of a pre-header.

Without further constraint, it cannot be guaranteed that
there is a unique point in the control flow that is executed
immediately after execution of a loop. In order to introduce
appropriate constraints, the following definitions are added.
A node in a loop is an exit node if it can branch outside that
loop. A node outside a loop which has predecessors inside
that loop is termed a successor node of the loop.

Typically, a non-nested loop which contains a break state-
ment has two exit nodes and one successor node, while a
double loop nest with a break statement in the inner loop
that branches outside the outer loop has two exit nodes and
two successor nodes. For example, Figure 6 shows the source
code and the corresponding (block-level) control-flow graph
for a doubly nested loop:

e The inner loop consists of blocks 4, 5 and 6; its exit
nodes are blocks 4 and 5; its successor nodes are blocks
7 and 8.

e The outer loop consists of blocks 2, 3, 4, 5, 6 and 7;
its exit nodes are blocks 2 and 5; its (sole) successor
node is block 8.

13

int i = 0 ;
outside:
while (i < maxI) {
int j = 0 ;
while (j < maxJ) {
if (c(i,j))
break outside ;

2 3
1f(i<MAXI)}—> 3=0; ‘
4 ' S
1f (§<MAXJ) if(c(i,d))

J+t;

Y
/* A */

Figure 6: Two nested loops and break statement jumping
outside outer-loop.

In this case, “after” loop {4,5,6} is both on the transitions
between blocks 4 and 7, and between blocks 5 and 8.

In such cases, where there are several successor nodes, weav-
ing an after piece of advice would require replication of the
woven code at all edges between exit nodes and their succes-
sor nodes. Although it is, in principle, possible to achieve
this, some aspect-oriented tools do not allow this kind of
weaving.

2.4 Loops with a unique successor node
The problem of having multiple exit nodes only occurs when
there are nested break or continue statements that branch
outside the inner-most loop to which they belong. The de-
fault case (of a break statement with no label specified)
corresponds to an exit node that branches outside the loop,
but to the same successor node as the normal exit would
go. In this case, weaving an after piece of advice could be
done either at the end of each exit node (possibly at mul-
tiple points, as described previously) or at the beginning of
the (unique) successor node (which thus guarantees a single
weaving point). Weaving an after-advice (at a single weav-
ing point) therefore consists of inserting a pre-successor, i.e.,
a new node inserted prior to the successor node, to which the
jumps from the exit nodes to the (unique) successor node
are redirected.

A loop with a unique successor node can also be reduced to
a single node in the control-flow graph. This then makes it
possible to weave an around-advice at the join point for the
loop.

Just as there are two different constructs for writing after-
advice depending on whether the execution returns normally

or throws an exception®, so might be abrupt exits be handled
differently (due to break statements). However, there are
cases where it is not possible to tell from the bytecode how
such exits would differ from those due to the main condition
of the loop evaluating to false. This is a limitation that
might have been avoided if a source-code representation had
been used, but it does make the model robust to changes in
programming style, as illustrated by the code in Figure 7.
The two loops in the figure might well produce the same
bytecode and control-flow graph, in which case the use of
break would not be distinguishable from the use of the “&&”
operator. It would thus be impossible to treat an exit from
the loop due to the break statement any differently than an
exit from the loop due to b evaluating to false.

while (a && b) {

/% Do something */
}
while (a) {
if (!'b)
break ;
/% Do something */
}

Figure 7: Considered special handling of break statements.

2.5 Loops with a unique exit node

The full potential of a loop join point can only be exploited
if its model comprises information regarding the behaviour
of the loop. In particular, it can be useful to predict as far
as possible that the loop iterates over a specific range of in-
tegers or over an Iterator (see Section 3). However clever
such a prediction may be, the programmer of an aspect deal-
ing with loops might want to handle cases where there is no
possibility of an abrupt exit (i.e., there is no break state-
ment in the loop). As shown in Figure 7, this case may also
exclude loops with complex conditions (in particular expres-
sions comprising and operations, which may create several
exit points).

2.6 Summary

Three categories of loops have been identified, with increas-
ing degrees of constraint. All three forms could be imple-
mented by a different pointcut, each with different meaning
and weaving capabilities. The more general form (several
successor nodes possible) would only allow the weaving of
before-advice, and possibly after-advice if the implementa-
tion of the weaver allows multiple weaving points. The in-
termediate form (unique successor node possible) and the
restricted form (only one exit node and one successor node)
would allow the weaving of before-, after- and around-advice.
The latter also guarantees that there is a single condition for
exit from the loop. This information is summarised in Ta-
ble 2.6; it will be used for context exposure in Section 3.

3. CONTEXT EXPOSURE

Although loops do not have arguments in the same way as
other join points (such as method calls), they often depend
on contextual information to which programmers may want

3“after() returning(...):” executes the advice after a

normal execution, “after() throwing(...):” executes the
advice if an exception has been thrown, and “after():”
executes the advice in both cases.

14

Before | After Around
several successor | +/ multiple weav- | X
nodes ing points

several exit nodes, | 1/ Vv Vv
1 successor node

1 exit node, 1 suc- | / Vv Vv
cessor node

Table 1: Different loop types and their weaving capabilities.

access. In particular, two forms of contextualised loops are
frequently found:

e loops iterating regularly over a range of integers (pre-
sented in Section 3.1), and

e loops iterating over an Iterator (presented in Sec-
tion 3.2).

Knowing that a loop is of one of these forms allows one to
predict the execution behaviour of the loop in some detail.
In order to make the resulting predictions meaningful, only
loops with unique exit points and unique successors are con-
sidered in this section. This prevents loops which have any
potential abrupt exits (e.g., using break statements) from
consideration; a potential use of break would make the find-
ing of a range of integers or of an Iterator less useful, since
the loop might exit before the predicted end.

3.1 Loop iterating over a range of integers
Loops iterating over a range of integers, following an arith-
metic sequence, are one of the most frequent forms of loops.
They consist of: initialising an integer local variable before
the loop; incrementing this value by a constant (the stride)
at the end of each iteration; and exiting the loop when the
value reaches a given maximum value. This form of loop
follows the pattern shown in Figure 1.

As explained in [3], exposing the iteration space is essential
to make it possible to write aspects for parallelisation. The
initial value, the stride and the final value will be available
in the execution context of the loop join point model, when
possible. Since these values are parameters ruling the execu-
tion of the loop, they could be considered, in aspect-oriented
models such as AspectJ, as “arguments” of the loop.

Predicting what the range of integer values is going to be
at the time of execution is not always possible. In order
to be exposed to the join point model, these values have to
be determinable before the join point is encountered. The
availability of these values will depend on the capabilities
of the implemented static analysis in the shadow matcher.
Determination of these values ought to be implemented in
a conservative way, discarding the cases where it cannot be
certain that these values will not change during the execu-
tion of the loop.

3.2 Loop iterating over an lterator

Another frequent form of loop (found in particular in Java
programs) is that conducted by an Iterator. In a man-
ner similar to that presented in Section 3.1, the instance of
Iterator controlling the loop can be seen as an “argument”
to be included in the join point context.

3.3 Parallel with Java 5 for-construct

Java 5 offers a new way to write for-loops iterating over
all the elements of an array or Collection, similar to “for-
each” constructs in certain other languages; this is shown in
Figure 8.

/* Before Java 5 */

Collection c ;

for (Iterator it = c.iterator ()
Object obj = it.next () ;
/* Do something with obj */

; it.hasNext ();) {

}

/* Since Java 5 */
Collection<Object> c ;
for (Object obj: c) {

/% Do something with obj */
}

Figure 8: Example of new Java 5 for-loops.

For iterating over the elements of an array or of a
Collection, the for-loop construct before Java 5 relies on
the abstraction provided by an array index or, respectively,
by an Iterator. Java 5 gives a new abstraction, more mean-
ingful in terms of data representation. The data guiding the
loop execution is directly and explicitly included in the way
the for-loop is written in the source code.* This is a useful
piece of information regarding this kind of loop, and the loop
join point model should also be able to expose it, wherever
possible. It can also be useful for loop selection, as described
in Section 4, and for certain forms of parallelisation, as de-
scribed in Section 6.

4. LOOP SELECTION

This section analyses and proposes solutions to the problem
of writing pointcuts for loops. In particular, the aim is to
determine which characteristics can be used for making a
selection. In aspect-oriented systems such as AspectJ, the
means of selection for a join point is, in most cases, ulti-
mately based on the naming of some source element char-
acterising the join point, possibly by using a regular ex-
pression. For example, to advise a method call or a group of
methods, the pointcut has to contain an explicit reference to
some names characterising the method signatures, whether
it be a pattern matching the name of the methods, or a pat-
tern matching the parameter types. Since loops cannot be
named, it is impossible to use a name-based pattern to write
a pointcut that would select a particular loop.

Neither loop labels, nor Java 5 (or C#) metadata, can be
used to identify a particular loop in a method. Firstly, the
loop labels will not be kept in the bytecode (and, in any case,
they are rarely used, unless motivated by a break statement
branching outside an inner loop). Secondly, Java 5 meta-
data cannot be applied to statements (apart from variable
declarations).

If it is known for certain that all the loops within a method
are to be advised, it would be possible, in AspectJ, to use
pointcut constructs such as withincode or cflow to restrict

4This is solely a source-code enhancement; the bytecode still
contains Iterators (for Collections) or temporary vari-
ables (for arrays).

15

the pointcut to all the loops contained in the methods tra-
ditionally picked up by those constructs. However, selecting
only one of several loops within the same method turns out
to be impossible without any further mechanism.

In order to solve this problem, it is proposed that selection
of loops is made to rely on the data being processed, as
well as the method in which the join point’s shadow is lo-
cated. In this case, the context —or what was called the
“arguments” of the loop in Section 3— can be used to refine
the selection. For example, the programmer might want to
write a pointcut that would only select loops iterating over
a specified range of integers, over a particular array, or over
a particular Collection. Such an example is shown in Fig-
ure 11 (Section 6): the parallelising advice only applies to
arrays of bytes.

More speculatively, there might be a potential application
for metadata, which could be introduced in the declarations
of the local variables that refer to the arrays, Collections
or Iterators utilised as “arguments” to certain loops.

5. IMPLEMENTATION IN abc

Although the loop join-point model could potentially be im-
plemented in various aspect-oriented tools, based for exam-
ple on Java or C#, the focus has been put on a model in-
tegrable into AspectJ. The implementation uses abc,® an
alternative AspectJ compiler, for two main reasons:

e extensibility was at the core of the abc design [2]; and

e abc relies heavily on the Soot framework [12], which
provides most of the infrastructure for performing the
analyses, in particular those described in Section 2.2.

This section describes an extension for abc, known as
LoopsAJ, which implements a loop join point for AspectJ
and subsequently provides the loop() pointcut. The lat-
ter picks out loops with unique exit points (as described in
Section 2.5) and provides contextual information where pos-
sible. Other pointcuts for the other forms of loops could also
be provided (by lowering the degree of constraint imposed
in the shadow matcher).

5.1 Shadow matching

The Soot framework, and subsequently abc, use Jimple,
which is a three-address representation of bytecode. This
makes it possible to look for loops at bytecode level (as de-
scribed in Section 2.1). The shadow matcher and all pre- or
post-transformations operate on this representation.

LoopsAJ extends the method that finds the shadows in
each method, so that it looks for loops as well. For each
method processed, the control-flow graph and its corre-
sponding dominator tree are built using the Soot framework
toolkits. Then combined loops are identified, as described
in Section 2.2.

abc provides two kinds of classes representing a shadow-
match: BodyShadowMatch and StmtShadowMatch (both ex-
tend ShadowMatch). The former is utilised when the shadow

Shttp://www.aspectbench.org/

is the whole method body; for example, when a method-
execution pointcut is used. The latter is used for pin-
pointing a specific statement (or group of statements) in
the method; for example, when a method-call pointcut is
used.

One of the requirements of abc is to insert nop operators in
the shadow, at the points where before and after ¢ pieces of
advice might be woven. Given this, most of the abc infras-
tructure can already handle loop shadows if they are treated
like StmtShadowMatch for before and after pieces of advice.

However, handling around pieces of advice requires a few
modifications in the abc around-weaver [6]. One of the
cases where a group of statements is used is the constructor-
call shadow match. In this case, two consecutive state-
ments are included in the shadow-match. However, loop
shadows are not necessarily formed by consecutive state-
ments. Indeed, at bytecode or Jimple level, the blocks
forming a given loop may be spread across the method,
with jumps from one block to another leaving blocks that
do not belong to the loop interleaved between blocks that
do. For this reason, StmtShadowMatch has been extended
by NonContiguousStmtGroupShadowMatch, for which the
around weaver has been modified in order to utilise its new

type.

5.2 Transformations for context exposure
Exposing the context, as described in Section 3, depends on
the cleverness of analysis and on the feasibility of certain
transformations. For the context exposed to make sense, it
has to be constant during execution of the join point.

In order to ensure this, as long as it is possible to predict that
the transformation will not change the meaning of the loop,
loop-invariant assignments are moved to the pre-header (be-
fore the shadow matching takes place), using a scheme in-
spired by [1, Ch 10.7].

5.2.1 Exposing the boundaries or therators
Further, in the case of loop iterating over a range of in-
tegers, if the context values are numerical constants, tem-
porary variables are introduced and initialised in the pre-
header, in order to make it possible to modify these values
via calls to proceed(...) within an around-advice. An ex-
ample transformation is shown in terms of source-code in
Figure 9.

The part of the implementation that determines the fea-
sibility of these transformations uses the dataflow analysis
facilities provided by Soot; these have also been used to
implement a code-motion method and a reaching-definition
analysis [10, 1].

5.2.2 Exposing the originating array @b1lection
It is not always possible to find an array to which the range
of integers corresponds (i.e. when minimum=0, stride=1, and
maximum is the length of the array). For example, if the
boundaries and the array are passed as arguments to the
containing method, finding the array that was the origin

5Tt is not always possible to insert after-advice, as described
in Section 2.

/* Moving the invariants outside */

int i = 0 ;
while (i < 10) {
/E L x/
int stride = 3 ;
i =i + stride ;
}
/) oo

/* First step: moving the invariants outside */
int i = 0 ;
int stride = 3 ;
while (i < 10) {
VAT 4
i =i + stride ;
}
/) T
/* Second step: storing the boundaries in
temporary variables */
int stride = 3 ;
int minimum = 0 ;
int maximum = 10 ;
int i = minimum ;
while (i < maximum) {
VAT V4

i = 1i + stride ;

Figure 9: Code-motion example.

of these values might require much more complex, cross-
methods and points-to, analysis. The current implementa-
tion requires at least the statement initialising maximum to
the length of the array to be within the same method as the
loop.

Similarly, a Collection will only be exposed if the
Iterator used for the loop comes from a call to
Collection.iterator() and Iterator.next() is not called
before the beginning of the loop.

5.2.3 Writing pointcuts

For loops iterating over a range of integers, the boundary
values are passed via the args construct of AspectJ, to which
int values are bound (for minimum, maximum and stride).
Also, an extra argument will be bound to the originating
array, if it has been found.

For loops iterating over an Iterator, the first argument
of args will be bound to the corresponding instance of
Iterator. Also, an extra argument will be bound to the
originating Collection, if it has been found.

In cases where the originating array or Collection do not
matter, it is recommended to use the double-dot wildcard
notation (“..”) [5], to make the argument optional. For
example:

e loop() && args(min, max, stride) will match only
loops iterating over an arithmetic sequence of integers
for which the compiler was unable to find an array
(although it may exist);

e loop() &% args(min, max, stride, ..) will match
all the loops iterating over a particular arithmetic se-
quence of integers; and

e loop() && args(min, max, stride, array) will
match all the loops iterating over an array, a refer-

ence to which will be bound to pointcut parameter
“array”.

5.3 Limitations

The limitations in the current implementation of LoopsAJ
divide into two categories: limits of analysis and predictabil-
ity; and limits due to features not yet written in this pre-
liminary version.

5.3.1 Analysis and predictability

One of the main limitations is the predictability on which
the invariant code-motion is based. Although code-motion is
currently done successfully in most useful cases, it will not be
performed in cases where an invariant is not spotted by the
data analysis. The implementation of such transformations
ought to be conservative, that is to say, it should not be done
unless it is certain that the resulting code will be equivalent.

Another limitation is the lack of points-to analysis in respect
of Iterators. Indeed, even though an Iterator instance
may look like it is being iterated regularly in the loop (i.e.
there is one and only one call to next () per iteration), noth-
ing guarantees that no other thread is holding a reference to
the same Iterator and is calling next() concurrently. In
this respect, the exposure of Iterators is probably not con-
servative enough. There may be a solution to this problem
if a form of whole-program analysis were to be used. (This
concurrency problem does not occur for loops iterating over
a range of integers since int is a primitive type and the int
values are local variables that cannot be modified by another
thread.)

More generally, there could be further dependency analysis
to provide safeguards in case of concurrent execution of a
join point. Again a whole-program analysis may be required
to be sure that a loop can be executed in parallel. Such
analyses can be much more complicated, and are beyond
the scope of this article.

Whatever the implementation of a weaver capable of han-
dling loop join points is, it should be stated clearly by the
implementors how conservative their implementation is, in
particular, how certain it is that a specified Collection is
at the origin of an Iterator.

5.3.2 Future work

The LoopsAJ implementation is still being worked on. In its
current state, only cases where the loop termination condi-
tion is of the form ¢ < maz and where the increment is of the
form ¢ = i + ... are handled. Eventually, other conditions,
using <, > or >, will be handled as well.

Also, the around weaving has only been implemented in
cases that do not generate closures (see [6] for further de-
tails). One of the difficulties being currently addressed is to
keep the block graphs up-to-date after weaving an around-
advice. At the time of writing, the implementation works
only partially on loop nests.

Moreover, the handling of traps is not always updated,
which can lead to the generation of bytecode with incorrect
exception tables.

17

6. ASPECTS FOR PARALLELISATION

This section shows an application of the loop() pointcut,
namely parallelisation of loops.

The example advice shown in Figure 10 executes in parallel
(using cyclic loop scheduling) all the loops contained in class
LoopsAJTest which are recognised as iterating over a range
of integers. As shown, the loop() pointcut combines ideally
with the “worker object creation pattern” [7], which creates
new Runnables to execute join points on separate threads.

void around(int min, int max, int step):
within(LoopsAJTest)
&& loop () && args (min, max, step, ..) {
int numThreads = 4 ;
Thread [] threads = new Thread[numThreads] ;
for (int i = 0 ; i<numThreads ; i++) {
final int t_min = min+i ;
final int t_max = max ;
final int t_step = numThreads*step ;

Runnable r = new Runnable () {
public void run() {

proceed(t_min, t_max, t_step) ;
¥
threads[i] = new Thread(r) ;
}
for (int i = 1 ; i<numThreads ; i++) {
threads[i].start () ;
}
threads [0].run() ;
try {
for (int i = 1 ; i<numThreads ; i++) {
threads [i]. join () ;
}

} catch (InterruptedException e) { 3}
}

Figure 10: Loop parallelisation using Java Threads.

The aspect shown in Figure 11 is slightly more complex. It
executes in parallel, using MPI for Java,” the loops working
on a array of bytes that are in method LoopsAJTest.test.
The original array, a, is exposed to the pointcut. It is then
sliced into an array p per MPI task. Then proceed uses
array p instead of a, so the loop in each MPI task only
iterates over its local portion of a.

When using these kinds of aspects, the programmer needs
to make sure that the loops that are going to be executed
in parallel can actually be parallelised. As explained in
Section 5.3, no inter-dependency analysis is currently per-
formed.

7. ISSUES RELATED TO EXCEPTIONS

This model and the way the loops are recognised do not
work properly if exceptions are used in the methods advised.
Firstly, exceptions handlers are activated according to posi-
tion between two bytecode instructions. Weaving may insert
code within the range of an exception handler when this may
not be intended. Secondly, combined loops correspond ap-
proximately to loops written in the source-code, as long as
the graph is reducible (or well-structured). This is the case
for bytecode produced by Java source-code when the graph
does not contain edges due to the potential handling of ex-
ceptions. However, taking the exceptions into account adds

"http://www.hpjava.org/mpiJava.html

import mpi.* ;

aspect MPIParallel {
int rank ;
int nthreads ;

void around(Stringl[] arg):
execution(void LoopsAJTest.main(..))
4& args(arg) {
try {
MPI.Init (arg);
rank = MPI.COMM_WORLD.Rank();
nthreads = MPI.COMM_WORLD.Size();

proceed(arg) ;

MPI.Finalize ();
} catch (MPIException e) {
e.printStackTrace () ;
}
}

void around(int min, int max, int stride,
loop() && args(min, max, stride, a,
withincode (¥ LoopsAJTest.test (..)) {
try {
MPI.COMM_WORLD.Barrier ();
int slice_length = a.length / nthreads ;

bytel[]l p = new bytelslice_length] ;

byte [l a):
L) k&

if (rank == 0) {
for (int i = 0 ; i < slice_length ; i++) {
plil = alil ;
}
for (int k = 1; k < nthreads; k++) {
MPI.COMM_WORLD.Ssend(a, k*slice_length,
slice_length, MPI.BYTE, k, k) ;
¥
} else {

MPI.COMM_WORLD.Recv(p, O

, slice_length,
MPI.BYTE, O,

rank) ;
}
proceed (0, slice_length, 1, p) ;
MPI.COMM_WORLD.Barrier ();
} catch (MPIException e) {
e.printStackTrace () ;
}
}
}

Figure 11: Loop parallelisation using mpiJava.

extra edges to the graph, which may make the graph non-
reducible. The main characteristics of non-reducible graphs
are that: (a) loops may have several headers; and (b) there
are still cycles in the graph after all the back edges have
been removed.

To illustrate this problem, Figure 12 shows an example of
code that involves loops and exceptions (taken from [9]).
Figure 13 shows the corresponding complete block-level
control-flow graph (including exceptions, shown as dashed
lines) using the Jimple intermediate representation for this
example, as produced by the control-flow graph viewer in-
cluded in the Soot framework. The edges due to traps
are dashed only in the illustration; in the system they are
treated as regular edges. Without entering into the details
of the syntax of Jimple, in this example, i0 and i1 represent
i and j, respectively, in the Java source-code.

The back edges found using the method described in Sec-
tion 2.2 are 4 — 1 and 5 — 5. The graph is not reducible
because, after these back edges have been removed, a cycle
made of nodes 1 and 5 exists. This gives a loop comprising

18

public int foo (int i, int j) {
while (true) {
try {
while (i < j)
i= /i
} catch (RuntimeException re) {
i =10 ;
continue ;
}
break ;
}
return j ;

}

Figure 12: Example of loops involving exceptions.

10 := @this
i0 := @parameter0
il := @parameter]
goto labell

i |

abell:
if i0<il goto label0

abel2:
goto label4

|
|
|
|
|
|

_
|

|
|

|
|

|
)
‘\
|

|
|

|
)
)
|

|
|

|

|
|
|
e
I o
| o P
L i0 = $i2/i0
|
5 vv##v
label3:
$r1 = @caughtexception
r» r2=_9rl
| i0=10
|| goto labell

Figure 13: Complete block-level control flow graph.

nodes 1, 2, 3 and 4 —which corresponds to “while (i<j)
i=j++/i;” in the source-code— and another loop compris-
ing node 5 (which handles the exception in the source-code)
only. Although the first loop is meaningful, and corre-
sponds to what would be naturally expected by looking at
the source-code, the second would cause before-advice to be
inserted just before the exception is caught, and after-advice
just before “continue” (without even dealing with the cor-
rectness of trap handling). This effect would not necessarily
be meaningful or useful for advising this loop.

Moreover, such code is not robust to changes of compilation
strategy. For example, a different compiler might insert an
extra, “useless” goto statement between nodes 0 and 1 in
this graph, yielding the control-flow graph shown in Fig-
ure 14. In this case there is a third back edge (5 — 8),
which gives a natural loop that could be assimilated into
the outer “while(true) { ... }” loop in the source-code.
The method used so far is not suitable for such cases involv-
ing exceptions, since the loop model should depend as little
as possible on the compilation strategy utilised.

temp_label:
goto labell

o

Figure 14: Another possible control-flow graph.

The problem with exceptions lies in the edges they add to
the graph. In particular, the edges between the predeces-
sors of the first node that could throw an exception and
the node catching the exceptions distort the dominator tree
when trying to find the back edges. Because these edges do
not actually come from the predecessors, but from a point
just before the nodes that could throw an exception, a pos-
sible solution would be to change this representation and
to introduce separate nodes for throwing exceptions. For
each node A that could potentially throw an exception rep-
resented as an edge from A to B, a new node E4 would be
inserted before A, so that all the edges pointing to A would
be redirected to F 4, and an extra edge F4 — B would be
added. The resulting control-flow graph for the example in
Figure 12 is sketched in Figure 15. This is similar to the
graph in Figure 13, but contains extra nodes Fi, F2, E3
and F4, which preceed nodes 1, 2, 3 and 4, respectively, and
represent the cases where an exception would be thrown in
one of these nodes, thus preventing the operations in that
node from being performed. This representation now gives
two back edges (4 — E1 and 5 — FE1) corresponding to a
single combined loop. To avoid ambiguity, chains of uncon-
ditional gotos should be considered as a single node if they
can all throw exceptions to the same catching blocks. This
approach has not yet been implemented in our prototype.

8. RELATED TOPICS

This section explores two related potential fine-grained join
points (i.e. join points that recognise complex behaviour
within a method and not only at the interface of the ob-
ject), namely a loop-body join point (Section 8.1), and an
“if-then-else” join point (Section 8.2).

8.1 “Loop-body” join point

The model of loop join point presented thus far takes an out-
side view of the loop; the points before and after the loop are
not within the loop itself. As a consequence, however many
iterations there may be for a given loop, before and after-
advice will be executed only once. For some applications, for
example for inserting a piece of advice before each iteration,
it might be desirable to advise the loop body. However, the
semantics would be difficult to define.

19

Figure 15: Control-flow graph with special nodes for excep-
tions.

Even in the source-code, there is ambiguity about where to
weave before and after advice in such a case. For example,
is the termination condition in the loop-body or not? (see
Figure 16). This question is even more relevant for complex
conditions that may include calls to methods.

int i = 0;
while (i<2) {
/% Is ‘‘before’’ the loop-body right here, or

*/

should it be before (i<2) is evaluated?

System.out.println("i: "+i) ;
i++
/* Is ‘‘after’’ the loop-body here? Would ¢ ‘i++°’
be included in the loop-body of the equivalent
for-loop? */
}
i=20;
do {

/* Before the loop-body */

System.out.println("i: "+i) ;
i++
/* Is ‘‘after’’ here, or should it be after (i<2)

*/

has been evaluated?
} while (i<2) ;

Figure 16: Loop-body join point: where are “before” and
“after”?

Again, a basic-block control-flow approach may solve the
problem. It may be possible to define that “before” the
loop-body is the point at the begining of the header, in-
cluded in the loop, and that “after” the loop-body is a point
inserted on the back edge of the natural loop. If there were
several back edges in the corresponding combined loop, an
equivalent of the “pre-header” could be inserted between the
back edges and the header, in order to keep a single weaving
point. In the case of a while-loop or a for-loop, “before”
the loop-body would also be before the evaluation of the
condition.

Without any enhancement, such a model would not com-
prise any contextual information (or “arguments” to the
loop-body).

8.2 “If-then-else” join point

Why stop at loops? Similar techniques could be applied
so as to provide aspect-oriented languages such as AspectJ
with a model for an “if-then-else” join point.

At source-code level, there is again the question of whether
the evaluation of the condition should or should not be in-
cluded in the “if-then-else” join point.

A basic-block control-flow approach may help to define a
model. A possible way to find the shadows of “if-then-else”
constructs might be in the combined use of dominators and
postdominators. “[We] say that node p postdominates node
i [...] if every possible execution path from i to [the exit] in-
cludes p” [10]. Given a node a that branches conditionally
to other nodes (unconditional branching presents no inter-
est), the smallest subgraph G of the control-flow graph that
contains another node b such that a dominates all the nodes
in G and b postdominates a, would represent an area of con-
ditional execution, starting from a and joining back at b.
Since a would dominate all the nodes in G, it would be the
unique entry node to GG. Since b would postdominate a, b
would be the unique exit node from G. Just before the con-
ditional jump in a would be the before weaving point, and
just before b (for edges coming from inside G) would be the
after weaving point.

Again, it is unclear what kind of contextual information
could be included in such a model. Without it, such an
“if-then-else” join point would represent areas of code that
will only be partially executed (for a given (dynamic) join
point).

However, going a step further by making it possible to ad-
vise goto statements directly in the bytecode, may break
modularity and consistency, even within a method, which
would counteract the benefits of using aspects.

Apart from the usual debugging and tracing applications
of such join points, another successful approach for defining
fine-grained join points (including conditional if blocks) has
been applied to code-coverage analysis [11].

9. CONCLUSIONS

The paper demonstrates that it is possible to provide As-
pectJ (and perhaps other aspect-oriented systems) with a
loop join point, which can be applied, in particular, to loop
parallelisation.

The two main remaining difficulties are: (a) the cleverness
of the analysis for context exposure; and (b) the mechanisms
for loop selection. The context analysis is mostly implemen-
tation dependant. But the loop selection problem is more
fundamental, especially because loops cannot be named or
tagged. Loop selection based on contextual data can work,
but is also limited with the current AspectJ join points. A
possible way forward would be to use dataflow pointcuts, as
presented in [8]. An extension of this pointcut that would
predict the dataflow ® would perhaps make it possible to

8A pdflow pointcut could be imagined in a similar way as
the pcflow pointcut mentioned by G. Kiczales in his keynote
talk at AOSD’2003.

20

determine at compile time which loops should be advised
by a parallelising aspect, therefore reducing the overhead of
run-time cflow (or dflow) checks.

10. ACKNOWLEDGMENTS

B. Harbulot acknowledges the support of the Engineering
and Physical Sciences Research Council (EPSRC) during
his doctoral studies.

11. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1985.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, J. Lhotdk, O. Lhotdk, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In Proceedings of the 4th
international conference on Aspect-Oriented Software

Development (to appear). ACM Press, 2005.

B. Harbulot and J. R. Gurd. Using AspectJ to
separate concerns in parallel scientific Java code. In
Proceedings of the 3rd international conference on
Aspect-Oriented Software Development, pages
122-131. ACM Press, 2004.

E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 26-35. ACM Press, 2004.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP ’01: Proceedings of the 15th
FEuropean Conference on Object-Oriented
Programming, pages 327-353. Springer-Verlag, 2001.

S. Kuzins. Efficient implementation of around-advice
for the AspectBench Compiler. Master’s thesis,
Oxford University, UK, September 2004.

R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning, 2003.

H. Masuhara and K. Kawauchi. Dataflow pointcut in
aspect-oriented programming. Lecture Notes in
Computer Science 2895, Proceedings of The First
Asian Symposium on Programming Languages and
Systems (APLAS’03)., pages 105-121, 2003.

J. Miecznikowski and L. Hendren. Decompiling Java
bytecode: Problems, traps and pitfalls. In Proceedings
of CC’02, 2002.

[10] S. S. Muchnick. Advanced Compiler Design and

Implementation. Morgan Kaufmann, 1997.

[11] H. Rajan and K. Sullivan. Aspect language features
for concern coverage profiling. In Proceedings of the
4th international conference on Aspect-oriented

software development (to appear). ACM Press, 2005.

[12] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying
Java bytecode for analyses and transformations.
Technical report, Sable Group, McGill University,

Montreal, Canada, July 1998.

How to Compile Aspects with Real-Time Java

Pengcheng Wu

College of Computer & Information Science
Northeastern University
Boston, Massachusetts 02115 USA
wupc@ccs.neu.edu

ABSTRACT

The Real-Time Specification for Java(RTSJ) uses a special
memory model based on scoped memory areas to address
the unpredictability of Java’s Garbage Collection mecha-
nism, which makes Java unsuitable to write real-time ap-
plications. It has been widely believed that Aspect-oriented
Programming (AOP) is helpful for implementing distributed
computing applications where a lot of crosscutting concerns
exist, including real-time concerns. While it is tempting to
use AspectJ with RTSJ programs, both of the AspectJ com-
pilers cannot handle complication in the RTSJ setting cor-
rectly, since they didn’t take into account the special mem-
ory model of the RTSJ. This paper reports our exploration
in this area and proposes a compilation approach that takes
into account of the memory model of the RTSJ.

1. INTRODUCTION

Although Java [1] has been successfully used for developing
complex enterprise-level softwares, it has hardly been used
for developing real time applications. Real time systems
have stringent time constraints that Java is unsuitable to
implement. One of the major obstacles is Java’s Garbage
Collection (GC) mechanism. While the GC provides im-
portant software engineering benefits by freeing developers
from error-prone manual memory deallocation tasks, its un-
predictable object allocation performance (due to the un-
predictable behaviors of the garbage collector) makes it im-
possible to write real time programs.

The Real-Time Specification for Java (RTSJ) [9] was pro-
posed and released to address this problem and it promises
to make Java suitable to construct large scale real-time sys-
tems. One official reference implementation of the RTSJ
has been provided by TimeSys Corp. [10], and several other
open source implementations [8, 7] are being developed as
well.

One of the most significant features offered by the RTSJ is

21

a new memory management model based on scoped mem-
ory areas. A real-time thread can enter a scoped memory
area. When it does so, all subsequent object allocation re-
quests (using the new operator) until the thread exits from
the scoped memory will allocate objects in the scoped mem-
ory area, which is not interfered by the GC, and the whole
memory area will be freed once all real time threads have
exited from it. Thus the time needed to allocate an object
in a scoped memory is predictable. Scoped memory areas
can be nested. To keep the safety of Java programming,
some important object reference rules are set and enforced
by RTSJ-compliant JVMs. For example, objects allocated
in outer memory scopes must not refer to objects allocated
in inner scopes to prevent dangling references.

On the other hand, Aspect-oriented Programming (AOP) [3]
was proposed as a new programming paradigm to modular-
ize crosscutting concerns and AspectJ [2, 6], as an AOP
extension to Java, is the most widely used AOP language.
It is widely believed that distributed system applications
have many crosscutting concerns and thus are ideal working
platforms for AOP techniques. One of the common concerns
in distributed system applications is to implement real time
requirements. So it would be tempting to use Aspect] on
RTSJ systems to see how it could improve implementations
of distributed applications.

However, current compilation approaches used by two major
AspectJ compilers (one is Eclipse AspectJ team’s AspectJ
compiler [6] and the other one is the AspectBench Compiler
for AspectJ or abc [5].) fail to work in the RTSJ settings,
because neither of them took into account the RTSJ’s special
memory management schema.

This position paper reports our recent experience of using
Aspect] in RTSJ programs and our exploration why the cur-
rent compilation approaches fail to work with them. Based
on the findings, we propose the correct compilation strategy
with the RTSJ’s memory management schema taken into
account.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of the RTSJ’s memory management model
and show how the current AspectJ’s compilation approaches
fail in this setting; Section 3 proposes a new compilation ap-
proach to address those problems; Section 4 discusses future
work.

2. ASPECTJCOMPILATION AND RTSJ MEM-

ORY MODEL

2.1 RTSJ’s Memory Model

To address the unpredicatability of Java’s GC mechanism,
the RTSJ extends the Java memory model by providing
memory areas other than the heap. Memory areas are di-
vided into three categories, i.e., ImmortalMemory, HeapMemory
and ScopedMemory as shown in Figure 1.

ImmortalMemory is a singleton memory area and objects al-
located in it have the same lifetime of the JVM, i.e., they
are never reclaimed and the GC will never interfere with
them. Objects allocated in HeapMemory are just like regular
Java objects that are subject to GC’s reclaim.

A ScopedMemory area provides guarantees on object allocation
time. A real-time thread can enter a scoped memory and
when it does so, all subsequent object allocation requests
using the new operator until the thread exits from it will al-
locate objects in the scoped memory area. Objects allocated
in a scoped memory area are not reclaimed by the GC, in-
stead, the whole memory area will be freed once all real time
threads have exited from it. Thus the time needed to allo-
cate an object in a scoped memory is predictable. LTMemory
and VTMemory provide linear time and a variable amount of
time allocation respectively.

Scoped memory areas can be nested. Each real-time thread
is associated with a scope stack that defines its allocation
context and the history of the scoped memory areas it has
entered [4]. The RTSJ also provides APIs for program-
mers to explicitly specify in which memory area an ob-
ject should be allocated (not just in the most recently en-
tered scoped area). Due to the special characteristics of
the RTSJ’s memory model, to keep the safety of Java pro-
gramming, some important object reference rules are set
and enforced by RTSJ-compliant JVMs. One of the most
important rules is that objects allocated in outer memory
scopes must not refer to objects allocated in inner scopes
to avoid dangling references. At run time, if such kind of
references are ever detected by RTSJ-compliant JVMs, an
IllegalAssignmentException will be thrown and the whole
execution will be stopped. It is programmer’s responsibility
to make sure that object references obey those rules.

To give readers some intuitions, Listing 1 is a short RTSJ
program for an aircraft detection system as presented in [11]
Class App implements a real time thread. It creates a
scoped memory (line 9) and runs a task (implemented by
class Runner) in the context of that memory area. The Runner
then creates another memory area (line 16) and allocates a
Detector object in the area referred by mem(line 17). Then the
thread enters a loop in which the detector continuously re-
ceives position frames from aircrafts and stores those frames
so that it can determine, for example, whether two aircrafts
are too close each other. Note that the run method (line
24) of class Detector is called in the dynamic extent of the
execution of method cdmem.enter(...)(line 19) and thus all
of the new requests associated with that run method will
allocate objects in the memory area referred by cdmem.

o

10
12
14
16
18
20
22
24
26

28

22

Listing 1: A RTSJ program
class App extends RealtimeThread {

public static void main(String[] args) throws Exception {

MemoryArea mem = ImmortalMemory.instance();
App app = (App) mem.newInstance (App.class);
app.start();

public void run() {
ScopedMemory mem = new LTMemory(...);
mem.enter (new Runner());
¥
}

class Runner implements Runnable {
public void run() {
LTMemory cdmem = new LTMemory(...);
Detector cd = new Detector(...);
while(true)
cdmem.enter (cd);
}
}

class Detector implements Runnable {
public void run() {
Frame frame = receiveFrame();
//get a frame and stores it into a table

2.2 Aspectd’s Compilation Approaches Break

RTSJ Memory Model

We want to deploy aspects to RTSJ programs to improve
implementations of crosscutting concerns. However, the As-
pectJ ’s compilation approaches (both the official AspectJ
compiler and the AspectBench Compiler for AspectJ) do
not take into account the RTSJ’s special memory model and
object reference rules, so the compiled code fail to run on
RTSJ compliant JVMs. The following subsections present
the cases where the compiled code may fail (they may not
be all the cases, instead, they are just the cases we have
explored).

2.2.1 Instance-based Aspect Instantiation

In the AspectJ language, aspect instantiation is always im-
plicit. Although programmers can specify how aspect should
be instantiated, they have no control when the instantiation
should happen, neither can they explicitly instantiate as-
pects. When a programmer defines an aspect, she can spec-
ify how the aspect should be instantiated by using perthis
, pertarget, percflow keywords or just without specifying
anything, which indicates there will be only a singleton in-
stance of the aspect during the program execution. We call
perthis and pertarget instance-based aspect instantiation,
because for each this (and target respectively) object of
the corresponding join point (as specified by a pointcut des-
ignator(PCD)), there is a separate instance of that aspect
associated with the object and the advice will be executed
on the particular aspect instance corresponding to the this
(or target) object of a join point. Interested readers are
referred to the AspectJ language manual [6] for the details.

For an instance-based aspect, the AspectJ compilers gener-

MemoryArea

ImmortalMemory

Scoped

Memory

HeapMemory

LTMemory

VTMemory

Figure 1: The RTSJ Memory Areas

ate code such that each of those object instances will main-
tain a reference to its corresponding aspect instance and
thus the aspect instance looking up has little runtime over-
head. And the aspect instantiation is a “lazy” procedure in
that the instantiation (and the reference assignment) only
occur when an join point matched with the PCD actually is
reached at runtime, instead of whenever an object of such
types is created. This approach avoids unnecessary aspect
instantiations if no join point matched with the PCD is
reached at runtime.

However, in the settings of the RTSJ, the scoped memory
area in which an object instance is created is not necessarily
the same memory area in which the first join point matched
with the PCD occurs. And in such a scenario, the aforemen-
tioned object reference rule of the RTSJ may be violated.
For example, we want to deploy an aspect as defined in List-
ing 2 to the RTSJ base program as defined in Listing 1 so
that the detector won’t do busy polling about the positions
of the aircrafts. Instead, it asks those positions periodicly,
say every 2 seconds. Aspect PeriodicalPoll has to be de-
clared as perthis, since there may be many Detector objects
in the system and each detector has to maintain its own
state about when the last polling was.

As expected, an IllegalAssignmentException is thrown at
runtime (running on the RTSJ official JVM [10] and the
code generated by both of the AspectJ compilers show the
same behavior). The reason is that the Detector instance
in this example is allocated (line 17 of Listing 1) in the
scoped memory area referred by mem, while the run method
on this detector is first executed in the context of the scoped
memory area referred by cdmem, where the PeriodicalPoll
instance corresponding to the Detector instance is created
and associated with it, and memory area mem is an outer
scope of memory area cdmem. Thus the object reference rule
has been violated.

While it is reasonable for a programmer to obey the ob-
ject reference rules in her own code (e.g, code to implement
classes or advice), she has no way to fix the problem reported
here, since aspect instantiation is implicit and beyond the
control of her. It is not just a bug, instead, it is a sys-
tematic issue, since similar problems occur on other aspect
constructs as well, as presented later. A different compila-
tion approach must be proposed to take into account the
RTSJ’s memory model.

M)

IS

10
12
14

16

23

Listing 2: An aspect applied on the program
//Make a detector do periodic polling, instead of busy
//polling.
aspect PeriodicPoll perthis(p()) {
Time lastTimePolled;
pointcut p(): execution(* Detector.run(..));

around(): p() {
if(it has not yet been 2 seconds since last polling)
getCurrentThread () .yield(); //don’t do polling
else {
//update the time
lastTimePolled = System.getCurrentTime();
proceed(); //do polling

2.2.2 CFLOW-based Aspect Instantiation

If we change the aspect declaration in Listing 2 to be a
percflow aspect, the same exception will be thrown when
the program is run on the RTSJ JVM. When an aspect is
declared as percflow, each time the execution enters the
dynamic extent of a join point matched with the PCD on
which the percflow is defined, there is an instance of the as-
pect created and associated with that extent and the aspect
program always operates on the innermost aspect instance.
Again, interested readers are referred to the AspectJ lan-
guage manual [6] for the details.

For a percflow aspect, the AspectJ compilers will generate
code such that there is a global stack to simulate the exe-
cution’s entering and leaving the extents of join points, and
to store the aspect instances in the stack. The global stack
is created in the class loading time, and thus is allocated in
the heap memory, while the percflow aspect instances may
be allocated in scoped memory areas, depending on the cur-
rent thread’s memory context. So the object reference rule
of RTSJ may be violated.

2.2.3 CFLOW Pointcut with Bindings

When an aspect has a cflow pointcut with bindings, the
program may also throw out an IllegalAssignmentException
when running on the RTSJ JVM. The AspectJ compilers
generate code using a similar stack based approach as for
percflow aspects. And the reason for the exception is also
similar.

2.2.4 Singleton Aspect and Reflective Access to thisJoin-

Point

Singleton aspect instantiation and the reflective access to
thisJoinPoint are other two cases where the code generated
by the Aspect] compilers will create instances that have
interactions with the base program. By analyzing the com-
pilation approaches, we expect those two cases won’t violate
the rules of the RTSJ memory model. And this expectation
has been consistent with our experiences of running AspectJ
programs on the RTSJ JVM.

3. PROPOSED COMPILATION APPROACH

‘We propose a different compilation approach with the RTSJ’s
special memory model and object reference rule taken into
account. We do a case by case explanation.

3.1 Instance-based Aspect Instantiation
There are several options to address the instance-based as-
pect instantiation problem. Let’s list and discuss them here.

o Always allocate instance-based aspect instances in the
heap memory. The IllegalAssignmentException prob-
lem will go away with this approach, since objects al-
located in scoped memory areas may have references
to heap objects. However, this approach is contradic-
tory to one of the original goals of the RTSJ, which
is to remove the unpredicatabilities of Java’s GC sys-
tem. Allocate an aspect instance in the heap memory
may trigger the GC thread and make the thread be
suspended infinitely. Worse, the RTSJ supports a spe-
cial yet very useful thread kind, NoHeapRealtimeThread,
which disallows any access to heap objects. So the
heap-allocated aspect instance approach cannot work
with NoHeapRealtimeThreads.

e Allocate instance-based aspect instances in the immor-
tal Memory. The IllegalAssignmentException problem
will also go away with this approach, since objects allo-
cated in ImmortalMemory have the lefetime as the JVM
and objects allocated in scoped memory areas may
have references to them. But we view ImmortalMemory

precious resources (because the memory cannot be
reclaimed, even when an aspect instance is no longer
reachable), so this approach should at least be discour-
aged so that ImmortalMemory can be saved for necessary
cases.

e Allocate instance-based aspect instances in the same
memory area as the host objects. This approach will
make the IllegalAssignmentException problem go away,
while avoids all of the problems of the previous two ap-
proaches. In addition, this approach is feasible, since
the RTSJ supports APIs to let the application allocate
objects in any accessible memory area.

After analyzing all the possibilities, we propose to use option
3, i.e., allocate instance-based aspect instances in the same
memory area as the host objects.

3.2 CFLOW-based Aspect Instantiation

Cflow-based aspect instantiation is more subtle to handle
with than the instance-based aspect instantiation, due to the

24

stack structure of a program execution. A simple approach
would be to allocate the cflow-based aspect instances in the
ImmortalMemory (the heap memory is definitely not an option,
as discussed before.), but it is not an optimal solution since
we want to save the ImmortalMemory.

With that in mind, we propose an approach that exploits
the tree structure of scoped memory areas and the fact that
there is a special communicating portal object associated
with each scoped memory area. Each of such a portal object
will maintain a map from threads to stacks, which are simi-
lar to the global stack used in the AspectJ compilers. Each
of the stacks stores the aspect instances associated with the
dynamic extent of the join point occurring in the current
scoped memory area in the corresponding thread. When
looking up a percflow aspect instance, the system will first
look it up in the stack (corresponding to the current execut-
ing thread) stored in the portal object of the current scoped
memory area; if it cannot find one, then it will climb up
the scoped memory area tree hierarchy and in each of those
scoped memories, look it up in the corresponding stack of
the portal object until it finds one, or it has reached the
root where we can determine there is no such an instance.

3.3 CFLOW Pointcut with Bindings

Our proposed approach for this case would be similar to the
approach for the previous case. We will exploit the portal
object and associate a stack to it and make use of the tree
structure of the scoped memory areas.

4. FUTURE WORK

‘We plan to implement the proposed compilation approach
in one of the AspectJ compilers and test the compiler on
some real RTSJ benchmarks. In addition, based on the se-
mantics of the RTSJ memory model and the semantics of
the AspectJ (we need to give a new one to incorporate the
instantiation respects and the cflow-related stuff), we are
aiming to give a formal proof that under this new compila-
tion approach, it is guaranteed that there will be no object
reference violation due to the instantiations introduced by
the compiler and the singleton aspect instantiation or the
reflective access to thisJoinPoint won’t violate those rules
either.

5. CONCLUSION

This paper addresses the issues of compiling aspects in the
settings of the Real-Time Specification for Java. We have
identified and analyzed the cases where the current com-
pilation approaches will fail due to the fact that the spe-
cial memory model of the RTSJ are not taken into account.
Based on the analysis, we propose a new compilation ap-
proach to address this problem.

6. ACKNOWLEDGEMENTS

We would like to thank Shriram Krishnamurthi, Karl Lieber-
herr and Mitchell Wand for their helpful discussion. We
are grateful to anonymous reviewers for their valuable com-
ments.

7. REFERENCES

[1]

2]

[5]

[6]

(8]

[10]

[11]

James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. Java Language Specification. Addison-Wesley,
2000. Second edition.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mike
Kersten, Jeffrey Palm, and William Griswold. An
Overview of Aspectd. In Jorgen Knudsen, editor,
European Conference on Object-Oriented
Programming, pages 327-353, Budapest, 2001.
Springer Verlag.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming. In
European Conference on Object-Oriented
Programming, pages 220-242. Springer Verlag, 1997.

F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek.
Real-time java scoped memory: Design patterns and
semantics. In Proceedings of the 7th IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, 2004.

Programming Tools Group at Oxford University and
the Sable Research Group at McGill University. The
AspectBench Compiler for AspectJ.
http://abc.comlab.ox.ac.uk/.

AspectJ Team. AspectJ home page.
http://www.eclipse.org/aspectj. Continuously
updated.

The jRate Team. The jRate Project.
http://jrate.sourceforge.net/index.html.

The Ovm Project Team. The Ovm Project.
http://www.ovmj.org/.

The Real-Time for Java Expert Group. The Real-Time
Specification for Java. https://rtsj.dev.java.net/.

TimeSys Corp. Reference Implementation for RTSJ.
http://www.timesys.com.

Tian Zhao, James Noble, and Jan Vitek. Scoped types
for real-time java. In Proceedings of the 25th IEEE
International Real-Time Systems Symposium, 2004.

25

26

Slicing Aspectd Woven Code

Davide Balzarotti, Antonio Castaldo
D’Ursi, Luca Cavallaro
Politecnico di Milano
Dip. di Elettronica e Informazione
Via Ponzio 34/5, 1-20133 Milano, Italy

ABSTRACT

The Aspect] programming language allows for the expres-
sion, in a compact way, of computations that affect several
points in a program (join points), even without knowing
where these point exactly are. This is claimed to ease the
separation of cross-cutting code. However, it is not clear
how real the separation is. In fact it might be difficult to
figure out the behavior of the whole system. In order to an-
alyze how an aspect affects the system, one has to consider
the slices of the system affected by aspectual computations.
However, the expressive power of AspectJ constructs makes
difficult to implement slicing algorithms that are both pre-
cise and produce useful, i.e., small enough, slices. In this
paper we describe our approach to slice AspectJ programs,
based on the analysis of the woven code.

1. INTRODUCTION

Well organized software systems are partitioned in modu-
lar units each addressing a well defined concern. Such parts
are developed in relative isolation and then assembled to
produce the whole system. A clean and explicit separation
of concerns reduces the complexity of the description of the
individual problems, thereby increasing the comprehensibil-
ity of the complete system [15].

The notion of aspect-oriented programming was intro-
duced by Kiczales et al. in [10]. Their approach was suc-
cessfully implemented in AspectJ [1] by Xerox PARC. As-
pectJ aims at managing tangled concerns at the level of
Java code. AspectJ allows for definition of first-class en-
tities called aspects. These constructs are reminiscent of
the Java class: it is a code unit with a name and its own
data members and methods. In addition, aspects may in-
troduce an attribute or a method in existing classes and
advise that some code is to be executed before or after
a specific event occurs during the execution of the whole
program. Aspect definitions are woven into the traditional
object-oriented (Java) bytecode at compile-time. Neverthe-
less, events that can trigger the execution of aspect-oriented
code are run-time events: method calls, exception handling,
and other specific points in the control flow of a program.

The Aspect] way to provide support for encapsulating
otherwise cross-cutting concerns is based on:

1. asyntactic extension to Java for isolating aspect-oriented

Copyright is held by the author/owner.
FOAL 2005 Chicago, Illinois USA
ACM XXX.

27

Mattia Monga
Universita degli Studi di Milano
Dip. di Informatica e Comunicazione
Via Comelico 39/41, 1-20135 Milano, Italy,

code;

2. a language for identifying join points where advice
code should be introduced; set of join points are called
pointcuts

3. a compile time weaver responsible to mix aspects with
the rest of the code in order to produce the running
system.

The constructs provided by AspectJ show up to be very
convenient to express cross-cutting concerns. A typical As-
pectJ advice can be something like “before any call to the
division function, check if the divisor is not zero”; in a very
economical way it is possible to affect all the divisions® in
the code, even without knowing where these divisions will
occur. However, it is not clear how real the separation is.
In fact, even though a “no division by zero” aspect would
be a isolated code unit, it might be difficult to figure out
the behavior of the whole system: every time the division
function is called, one has to consider that also the aspect
oriented code is executed. In general, aspects, while coded
in a separate unit, do not enable a true modular reasoning[5,
16]. Moreover, it is still not clear how to cope with the diffi-
cult problem of aspect interaction (see [7, 9, 3, 12] for some
work in progress and discussion). In order to asses the re-
sulting complexity of an aspect oriented program, we tried
to apply well known techniques of program comprehension,
namely static analysis and program slicing, to AspectJ. In
this paper we describe our effort for building a slicer able to
identify which part of an AspectJ program is affected by a
specific aspect.

The paper is organized as follows: in Section 2 we present
the challenge of slicing AspectJ programs, in Section 3 we
describe our approach to the problem, in Section 4 we sketch
the implementation of our tool, in Section 5 we show a sim-
ple example, and finally in Section 6 we draw some conclu-
sions.

2. SLICING AO PROGRAMS

Program slicing is a program analysis technique intro-
duced by Weiser in the first half of the ’80s [21]. A backward
(or forward) slice of a program consists in all the statements
that may influence (or may be influenced by) a given set of
statements, called the slicing criterion.

!Unfortunately this example cannot be implemented in As-
pectJ as far as integer constants are concerned, for built-in
operations are not advisable. The case to be considered
should use some number classes with a division method

We will focus our attention on backward slicing based only
on static information, i.e., without making any hypothesis
about input data. Slicing techniques were initially proposed
for procedural programs, however they have been widely
studied and applied also to object oriented programs [13].
In [14] Liang and Harrold approached the slicing of object
oriented programs as a graph reachability problem: each
method in an object oriented program is represented by a di-
rected graph (method dependence graph, MDG) in which ev-
ery statement is a node and edges represent control and data
dependences among them. All MDGs are then merged in a
system dependence graph (SDG), a directed graph that rep-
resents the whole analyzed program. On this graph, slices
can be computed by exploiting the algorithm introduced by
Horwitz, Binkley, and Reps [8].

Unfortunately, the techniques developed for object ori-
ented languages cannot be used as they are with aspect ori-
ented languages, due to some specific aspect oriented fea-
tures present in most modern aspect oriented languages. In
fact, Aspectd provides powerful constructs that, while giv-
ing great power to programmers, pose a number of problems
during static analyses of the code.

A first issue is the use of “inter-type declarations”. In
fact, aspects can modify a type by introducing a member
in a class or even by manipulating the type hierarchy. This
might be useful when one wants to adapt an existing class
to a given interface. The use of these constructs, though
handy in most cases, has the evil effect to force any analysis
to be “holistic”, because every analysis needs a closed world
assumption. If one wants, for instance, to decide if between
two classes A and B an inheritance relationship holds (a criti-
cal information needed when examining polymorphic calls),
one has to analyze all the aspects, because any of them could
declare such a relationship. Similarly, point-cuts may be de-
fined by using wildcards. This flexibility forces the analysis
to take into account all the code of the system.

Another issue is the use of dynamic properties in point-
cut definitions. For example, Figure 1 shows a pointcut
definition that depends on the value of the function If.-
getInputFromUser().

aspect Trace{
before(): call(void System.exit(int))
&& if(1f.getInputFromUser()){
System.out.println(thisJoinPoint);

}

Figure 1: A pointcut definition that uses dynamic
properties

Thus, specific slicing techniques for AspectJ programs
were proposed. Zhao and Rinard proposed an algorithm
for building a system dependence graph specific for AspectJ
programs [22]. They consider each advice like a method and
associate an MDG to each of them. Two cases are consid-
ered for inter-type declarations. If an inter-type declaration
introduces a method it is represented using a module depen-
dence graph. If it introduces a field in a class it is considered
as an instance variable of both the aspect, that introduced
the field, and the class in which it is introduced.

A pointcut is represented with a join point vertex. A weav-

28

ing arc connects the point in the Java part of the AspectJ
program picked up by the pointcut to the join point vertex.
The join point vertex is connected to the module depen-
dence graph entry vertex associated with it.

Eventually, the whole aspect is represented by an aspect de-
pendence graph, a directed graph whose entry vertex is con-
nected by an aspect membership arc to the join point vertices
and the module dependence graphs declared by the repre-
sented aspect. The aspect dependence graph represents the
parameters, eventually passed or used by advices or inter-
type declared methods, with formal in and formal out ver-
tices, just like formal vertices used in Liang and Harrold’s
system dependence graph.

3. AO SLICING OF WOVEN CODE

Slicing AspectJ programs by considering methods and ad-
vice code as first-class entities [4, 22, 18] is conceptually
appealing, since it does not depend on the actual implemen-
tation of the AspectJ weaver, and, more fundamentally, it
enables the use of aspects as first-class entities in the result-
ing model. However, building a working tool is far from triv-
ial, because it needs to be able to manage several AspectJ
syntax details. In particular, the AspectJ pointcut defini-
tion language allows programmers to characterize pointcuts
on a wide range of abstraction levels:

e Lexical (withincode, regular expression on identifiers,
ete.)

e Statically known interfaces (void *.func(int), etc.)
e Run time events (call, execution, set, if, etc.)

For example, [22] does not take into account wildcards,
changes in class hierarchy, and dynamic pointcuts. Also
whether it would be possible to manage all these character-
istics with ad-hoc (and not easy to implement) solutions,
the resulting program should implement a lot of features
currently implemented by the AspectJ compiler.

Instead, one can try to analyze the woven program, i.e.,
plain Java bytecode, by applying existing techniques and
map the results on the original structure of the program.

Thus, in order to build as quick as possible a tool for
experimenting with AspectJ programs, we adopted a more
pragmatic strategy:

1. Compile classes and aspects using the AspectJ com-
piler.

2. Weave aspects into an executable program.

3. Apply existing slicing algorithms (we built upon the
Soot static analysis framework [19]) to the resulting
byte-code.

4. Obtain a slice, as a set of byte-code statements.

5. Map the results onto the original aspect oriented source
code.

The advantage in adopting such an approach is twofold.
First, it is not necessary to translate aspects into classes
because this task is done (in a better way) by AspectJ itself.
Second, this approach does not neglect any detail related to
AspectJ syntax and it does not need any modification in
case of changes in some AspectJ functionalities.

Working at the level of Java byte-code could appear not
appropriate because any distinction among classes and as-
pects may seem to be lost. The Aspect] weaver translates
aspects in classes, advices in methods, and join points in
methods invocation. Thanks to this approach, it is not diffi-
cult to map every statement to its original aspect (or class).
However, a tool based on byte-code slicing has to be changed
when the AspectJ weaver modifies its implementation strat-
egy.

Thus, the strategy we implemented in our tool starts by
inspecting the Java byte-code, then the call graph is com-
puted and the “def-use” analysis performed. Eventually, an
SDG of the woven Java program is built, and, by exploit-
ing standard algorithms proposed by the program analysis
community during the last 20 years, static slices are com-
puted. Finally, slices can be mapped backwards to the As-
pectJ code, leveraging on the information about aspects that
is still encoded in the byte code. In the following section we
describe how the tool was implemented and the limitations
of the current prototype.

4. SLICER IMPLEMENTATION
4.1 Strategy and limitations

Notwithstanding the deep research work done in the slic-
ing field, only a few products able to do slicing of real object-
oriented programs exist: for example, the Bandera tool [6]
has a component aimed at slicing Java programs in order
to ease model checking of properties of multi-threading pro-
grams. Bandera operates at the bytecode level, thus one
could imagine its use also in an AspectJ context (remem-
ber that AspectJ programs are eventually woven in plain
bytecode). However, all our attempts to use it for slicing
programs generated by the AspectJ compiler failed, since
the code, while publicly available under a GPL license, is
hard to understand and evolve. In fact, Bandera’s slicing
component is targeted to slice synchronization constructs,
thus, it should be enhanced to deal with generic slices. Re-
cently, Bandera’s research group released the Indus program
slicer [2]. We did not test the new tool, yet. However, using
the Indus tool required a licence agreement conflicting with
our goal of producing an open source tool.

However, both Bandera and Indus are based on a Java
program analysis framework called Soot [19]%. Therefore,
we decided to build our slicer directly on the Soot set of
libraries. The Soot framework uses an intermediate repre-
sentations called Jimple, that simplifies the analysis of the
bytecode. The algorithm used to compute slices is the one
proposed by Horwitz, Binkley and Reps [8]. This algorithm
works on the SDG of the program that is built by putting
together the MDGs of all methods. It is worth noting that
the advice code is represented by plain methods in the woven
code, thus normal techniques apply. In order to build the
SDG, each method is analyzed after the methods it calls. For
each analyzed method the following graphs are computed

e the control flow graph (CFQG), representing the control
flow among statements: a statement a is connected to
b if b can be executed immediately after a;

e the control dependence graph (CDG), representing state-

ment dependences from conditional statements;

2S00t itself is LGPL, thus there is no contradiction in using
it in a proprietary tool as Indus is.

29

e the data flow graph (DFG), representing data depen-
dences: a statement a is connected to b if b uses a
variable defined by a.

The main purpose of our work was to show the feasibil-
ity of our slicing approach based on bytecode analysis. We
would like to have a tool as quick as possible to start exper-
imenting with AspectJ examples of increasing complexity.
In order to build a working tool in a reasonable amount of
time, the current prototype has the following limitations:

e variables are not of array types;

e 1o exception handling mechanism is used;
e there are no inner classes;

e there are no static members;

e there are no recursive calls;

e the program has a single thread of control;
e there are no inter-procedural aliases.

The tool produces correct slices (i.e, slices that contain
all the statements that might be part of the minimal slice,
that is not computable [20]) for any program that satisfies
the above limitations. We intend to remove all these lim-
itations in the forthcoming versions of the tool, but their
introduction was useful to build quickly a proof-of-concept
prototype. Our tool is available on request under a GPL
license agreement.

4.2 Building the graphs

In order to build the CFG and the CDG of each method
we relied on the Soot framework. To each CFG we added
a Start node to represent the method’s entry point and a
Stop node to represent the method’s exit point. Then the
CDG was built following the approach used by the Bandera
tool [6].

Since a method (or advice code) often calls another method
(or advice code) their MDGs must be connected at the call
sites. An example showing how call sites are connected is
shown in Figure 2.

CFG edge

Calling method (before) 3

:
Call node ' LDGedge
v :
;
: Called method
;
:

Calling method (after) calledge ___--=~

parameter-in _ -~

Figure 2: Call site modification for a polymorphic
call

Due to polymorphism, the piece of code actually executed
could be decided only at run-time, thus we created a new
branch of control flow for each possible call target. In each
branch, we put actual-in and actual-out nodes depending on

how parameters are used by the called method.

We say that a method uses one of its parameters if it reads
the parameter value or if it defines its value. We say that
a method defines one of its parameters if it defines the pa-
rameter value. We put an actual-in node for each parameter
used by the callee and an actual-out node for each parameter
that may be modified by the callee.

We chose to analyze each method after the methods it

calls, so we know which parameters are used or defined and
we can determine which actual nodes we have to create.
To take into account dependencies among actual and for-
mal parameters, we added some edges to the SDG. We put
a parameter-in edge from an actual-in node to the corre-
sponding formal-in node in the called method. We put a
parameter-out edge from a formal-out node in the called
method to the corresponding actual-out node in the calling
method.

Actual-in and actual-out nodes in each branch are control
dependent on the method call instruction, so we add control
dependence edges from the call node to actual-in and actual-
out nodes. To take into account the dependence of called
method on its caller, the call node itself is linked to the
entry vertex of called method with a method call edge. Since
method call edges are interprocedural edges, they are only
put in the SDG.

Next we add summary edges from actual-in nodes to actual-
out nodes. A summary edge is added from actual-in A to
actual-out B if and only if the value of A may affect the
value of B. Again, these dependencies have been computed
during the analysis of the called method.

The last node of each branch is eventually connected with
a control flow edge to the original call node successor in the
CFG. Figure 2 shows a modified call in case there is a single
parameter and its value is modified by the called method.

4.2.1 Formal Parameters and Return Value Represen-

tation

After the creation of actual nodes, we have to build formal-
in and formal-out nodes to represent formal parameters of
the method under analysis. Since Jimple representation al-
ready contains instructions representing the assignment of
parameter values to local variables, we use these instructions
as formal-in nodes.

To create formal-out nodes, we analyze method instruc-
tions one by one, searching for instructions that modify
reference-type parameters. Non-reference parameters (prim-
itive types as ints) cannot be modified, since their redefini-
tion is not returned to the calling method, so we do not
create formal-out nodes for them. For each parameter, we
add a formal-out node in the method if and only if there
is at least one instruction that can modify the parameter.
Formal-out nodes are placed sequentially before the Stop
node in the CFG of the called method. To handle multi-
ple return statements, we link each one of them to the first
formal-out node (if there are no formal-out nodes, they are
linked to the Stop node).

4.3 Dataflow analysis

DFGs are built following a slightly modified version of
the algorithm proposed in [17]. This algorithm requires
to associate six sets (use, def, gen, kill, in, and out) to
each node. The def set contains the variables defined in
a given node. In our implementation the gen set (gener-

30

ated from the def one) contains strings in the form ‘node-
number.variable-defined’. For example, if node 7 defines
variable ‘foo’; we put in node 7 gen set the string ‘7.foo’.
When we find a killing definition of ‘foo’, we put in the
killing node kill set the string ‘*.foo’. This means that ev-
ery other definition of ‘foo’ has to be killed. We also use the
character “*’ to express datamember killing. When we find
a killing definition of the reference variable ‘bar’, we put in
the killing node kill set the string ‘*.bar.*’, instead of explic-
itly killing all its data-members. This allows us to represent
killing definitions for object data-members without knowing
the inner structure of classes.

Computation of reaching definitions needs comprehension
of intra-procedural alias information. We don’t describe
here the algorithms we use to compute intraprocedural aliases,
since they are performed by the Soot framework. Since
aliases affect variables uses and definitions in method nodes,
we have to modify gen, def and use sets for each node.

For each used variable in the node we build a graph to
express the use of its ‘containers’ and its aliases. The ‘con-
tainer’ of a class datamember is the object the datamember
belongs to. An example of this graph is shown in figure 3.

4> Alias are linked
< by this arrow

Figure 3: Alias graph example

We start building this graph by adding the used variable
to it. Next we add to the graph its aliases. Then, for each
graph head, we add to the graph its ‘container’, linking the
container with the head. When we add a ‘container’ to the
graph, we also add its aliases and we link them with the
head we are examining. We go on until no more containers
can be added to the graph.

From this graph we can extract the node use set. We

examine the graph heads one by one. We follow graph edges
until we reach one of the tails. For each node we come across,
we take the last part of its name and concatenate it with
others. The obtained variables are added to the node use
set. Then we remove the examined head from the graph.
Referring to figure 3, we can examine what happens when
examining the head named ‘x’. First, ‘x’ is added to the
node use set. Then we follow the edge and we come across
‘foo.a’. We add ‘x.a’ to the node use set. Next we come
across ‘foo.a.b‘, and we add ‘x.a.b’ to the node use set. Since
we have reached a tail node, we remove the ‘x’ node from
the graph.
If we are examining a variable being defined by the node, we
build the graph in the same way, except that we do not add
variables alias. However containers’ aliases are still added
to the graph.

Reaching definitions are then computed using the same
algorithm proposed in [17], with some minor modifications
needed to make it work with our representation of killing
definitions.

The last step in the method analysis consists in calcu-
lating dependencies of formal-out nodes and return value
node from formal-in nodes. Starting from each formal-out
node, we backwards follow summary, control and data de-
pendence edges, looking for formal-in nodes. Any formal-in
node found in this intraprocedural slice affects the formal-
out node we examined.

4.4 Mapping the Slice to the AspectJ Code

Once the slice of code that affects a given criterion is com-
puted, we have to map it back onto the original AspectJ
source code. This is accomplished analyzing source code in-
formation found into the bytecode instructions. Since byte-
code contains information about original source code lines
corresponding to each bytecode instruction, the mapping is
performed extracting source code line numbers from byte-
code. In this way method and advice statements are easily
identified. Instead, pointcut declarations do not normally
contain executable statements. However, when they do (as
in the example shown in Fig. 1), the mapping is solved cor-
rectly.

Currently, we are not able to correctly map inter-type
declarations. In fact, Aspect] weaver documentation does
not precisely describe the weaving of inter-type declaration
(that part is prone to heavy optimization, and it is likely
to change in different releases). Inter-type declarations are
implemented by direct bytecode manipulation, without pre-
serving any information about their source, therefore by an-
alyzing only bytecode it is impossible to spot them correctly.

5. AN EXAMPLE

Figure 4 contains a piece of code that shows a simple case
of aspect interference. Class T represents an hypothetical
boiler controller. Suppose the programmer wants to add
two different aspects. The first one (LockAspect in the code)
introduces a locking mechanism in order to assure that only
one object at a time can modify the boiler status. The
second aspect (TInvariant in the code) checks that the boiler
temperature can never be set to a value greater than 100
Celsius degrees and shuts down the boiler otherwise. Both
the aspects work properly if they are independently applied
to the program but if they are applied together the invariant
aspect can in some case interfere with the locking mechanism
leading the system to a deadlock status.

Applying our tool to the weaved bytecode it is possible to
construct the SDG and then calculate the slices using the
two aspects as slicing criteria. The whole graph contains
236 nodes and around 650 edges. 3

The slice built using TInvariant as slicing criterion does
not contain any node that belongs to the LockAspect code.
That means that the locking mechanism does not interfere
with the invariant property. On the contrary, the slide built
starting from LockAspect contains nodes of the invariant
code. This is not a proof that the two aspects are incompat-

3A machine equipped with a 1.6GHz processor, 512MB of
RAM, GNU/Linux, a Blackdown Java VM, spent 2.1s to
produce the graph and 1ms to compute the slice, including

1/0

31

ible, but it represents a useful information for the program-
mer since it points out that the TInvariant aspect affects the
behavior of the locking aspect.

6. CONCLUSIONS

Our tool, while quite limited in the current preliminary
version, shows that AspectJ programs analysis can be actu-
ally performed analyzing woven bytecode. Moreover, since
every Java program is also a valid AspectJ program, the tool
can also be used to analyze plain Java programs, provided
that the limitations described in Section 4.1 are satisfied.

Mapping the computed slice onto the source code is cur-
rently possible only for statements that are part of meth-
ods and advice code. The main open problem is still about
the inter-type declarations: currently they are not correctly
mapped, because it is not easy to understand whether class
files have been modified during the weaving process. How-
ever, we can correctly analyze effects of inter-type decla-
rations in the program. Mapping of inter-type declarations
would be easily implemented if AspectJ compiler could mark
intertype declarations using Java annotations, provided by
Java 1.5.

We plan to remove most of the limitations of the tool in
the following releases. We will be able soon to analyze ar-
rays introducing in our code the opportune representation.
Soot already provides a representation for arrays and we are
going to use it. We will also implement a simplyfied excep-
tion analysis, that will be able to deal with intraprocedural
exceptions, using tools provided by Soot.

The further step will be dealing with direct and mutual
recursion along the lines sketched in [17]. Morever, static
fields will be analyzed by exploiting the techniques described
in [11].

Our final goal is to understand how large is the impact of
using aspects on the comprehension of the whole program.
In fact, if the slice associated to an aspect would be too
big (at worst the whole program), this is a hint that the
separation of the aspect code from the base one is only syn-
tactical, since in the worst case no compositional invariant
can be taken for granted.

7. REFERENCES

[1] Aspectj. http://www.aspectj.org.

[2] Indus. website:http://indus.projects.cis.ksu.edu/.

[3] Davide Balzarotti and Mattia Monga. Using program
slicing to analyze aspect-oriented composition. In
Curtis Clifton, Ralf Lammel, and Gary T. Leavens,
editors, Proceedings of Foundations of Aspect-Oriented
Languages Workshop at AOSD 2004, pages 25—29,
Lancaster (UK), March 2004. Iowa State University.

[4] Lynne Blair and Mattia Monga. Reasoning on
AspectJ programmes. In Proceedings of Workshop on
Aspect-Oriented Software Development, pages 45-50,
Essen, Germany, March 2003. German Informatics
Society.

[6] Curtis Clifton and Gary T. Leavens. Obliviousness,
modular reasoning, and the behavioral subtyping
analogy,. Technical Report TR03-01a, lowa State
University, January 2003. presented at SPLAT 2003.

[6] James Corbett, Matthew Dwyer, John Hatcliff, Corina
Pasareanu, Robby, Shawn Laubach, and Hongjun

public class T{
int temperature;
public T(){
this.temperature = 0;

public void set_temp(int t){
System.out.println(” Setting temperature to ”+t);
this.temperature = t;

}

public void shutdown(){
System.out.println(” Shutting down...”);
}
}

public class Main {
public void method1(T t, int x){
t.set_temp(x);

public static void main(String|] argc){
Main m = new Main();
T t = new T();
m.method1(t, Integer.parselInt(argc(0]));
}

}

public aspect LockAspect {
public void T.get_lock(){
System.out.println(”Lock acquired”);

public void T.release_lock(){
System.out.println(”Lock released”);

}
before(T t): target(t) && (call(void set_temp(int))){
t.get_lock();

after(T t): target(t) && (call(void set_temp(int))){
t.release_lock();

before(T t): target(t) && (call(void shutdown())){
t.get_lock();

after(T t): target(t) && (call(void shutdown())){
t.release_lock();
}

}

public aspect TInvariant {
before(T t, int newval):
set(int T.temperature) && args(newval) && target(t){
if (newval > 100) t.shutdown();
}
}

Figure 4: Example of interacting aspects

Zheng. Bandera: Extracting finite-state models from
Java source code. In 22nd International Conference on
Software Engineering, pages 439-448, Limerick,
Ireland, June 2000. IEEE Computer Society.

Remi Douence, Pascal Fradet, and Mario Siidholt.
Composition, reuse, and interaction analisys of
stateful aspects. In Proceedings of the 3rd
international conference of aspect-oriented software
development, Lancaster, UK, March 2004. ACM.
Susan Horwitz, Thomas Reps, and David Binkley.
Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and
Systems, 12(1):26-60, January 1990.

Shmuel Katz. Diagnosis of harmful aspects using
regression verification. In Gary T. Leavens, Ralf
Lammel, and Curtis Clifton, editors, Foundations of
Aspect-Oriented Languages, March 2004.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.
Gyula Kovécs, Ferenc Magyar, and Tibor Gyiméthy.
Static slicing of Java programs.

Shriram Krishnamurthi, Kathi Fisler, and Michael
Greenberg. Verifying aspect advice modularly. In
Proceedings of SIGSOFT’04/FSE-12, Newport Beach,
CA, USA, November 2004. ACM.

L. Larsen and M.J. Harrold. Slicing object-oriented
software. In In Proceedings of the 18th International
Conference on Software Engineering, pages 45-50.
Association for Computer Machinery, March 1996.
Donglin Liang and Mary Jean Harrold. Slicing objects
using system dependence graphs. In ICSM, pages

(8]

9

(10]

(11]

(12]

(13]

(14]

358-367, 1998.

David Lorge Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053-1058, December 1972.
Martin Rinard, Alexandru Salcianu, and Suhabe
Bugrara. A classification system and analysis for
aspect-oriented programs. In Proceedings of
SIGSOFT’04/FSE-12, pages 147-158, Newport
Beach, CA, USA, 2004. ACM.

Christoph Steindl. Slicing for Object-Oriented
programmang languages. PhD thesis, Johannes Kepler
University Linz, 1999.

Maximilian Stoerzer. Analysis of AspectJ programs.
In Proceedings of 3rd German Workshop on
Aspect-Oriented Software Development, March 2003.
Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot -
a java bytecode optimization framework. In CASCON
’99: Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research,

page 13. IBM Press, 1999.

M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering,
pages 439-449. IEEE Computer Society Press, March
1981.

M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352-357, July 1984.
Jianjun Zhao. Slicing aspect-oriented software. In
Proceedings of the 10th IEEE International Workshop
on Programming Comprehension, pages 251-260, June
2002.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

32

Back to the Future:
Pointcuts as Predicates over Traces

Karl Klose
Darmstadt University of Technology
D-64283 Darmstadt, Germany

Karl.Klose@gmx.de

ABSTRACT

Pointcuts in aspect-oriented languages can be seen as pred-
icates over events in the computation of a program. The
ability to express temporal relations between such events is
a key feature towards more expressive pointcut languages.
In this paper, we describe the design and implementation of
a pointcut language within which pointcuts are predicates
over the complete execution trace of the program. In par-
ticular, pointcuts may refer to events that will happen in
the future. In this model, advice application is an iterative
process that stops once a fixed-point is reached. On the
negative side, we do not have a “killer example” for these
kinds of pointcuts, there are still some serious limitations,
and our implementation strategy is not suitable for a prac-
tical language. However, we think that considering point-
cuts as predicates over the whole computation and advice
application as a fixed point problem is an interesting new
perspective on pointcuts for the FOAL audience.

1. INTRODUCTION

In aspect-oriented programming, dynamic join points are
points in the execution of a program, and pointcuts are
predicates over join points. In the past, aspect-oriented pro-
gramming has concentrated on pointcuts that are only pred-
icates over the current join point and can thus efficiently be
implemented by means of static weaving. However, these
pointcuts are not powerful enough to express relations be-
tween different join points.

AspectJ has one special construct to relate different join
points in the form of the cflow pointcut designator [7]. More
recent works try to make more information about history of
the computation available for describing pointcuts [3, 10].

In this paper we want to increase the expressiveness of
pointcuts even further and consider pointcuts as predicates
over the whole execution trace. We have designed and im-
plemented a prototypical aspect-oriented languages within
which the execution trace is reified as a deductive database

33

Klaus Ostermann
Darmstadt University of Technology
D-64283 Darmstadt, Germany

ostermann@informatik.tu-darmstadt.de

in Prolog [9] and pointcuts are queries over this database.

Advice application is a fixed point problem in this language.
Our implementation computes a solution to the fixed point
problem with an iterative process, within which from all
advices that are applicable for a given trace, the advice that
starts at the smallest point T in time is executed by resetting
the application to the state at time T, and executing the
advice and the remainder of the application. This process
is iterated until a fixed-point is reached.

This model allows pointcuts to refer to future events in the
computation, and also allows sophisticated interactions be-
tween advices. However, the power that comes with this
model is also not without disadvantages. For example, it
is easy to create examples with paradox aspects where the
aforementioned iterative process does not have a fixed-point.

The remainder of the paper is structured as follows. Sec. 2
presents our language GAMMA. Sec. 3 presents some ex-
ample programs. Sec. 4 discusses the problem of semantics
and some preliminary results on the applicability of domain
theory and static analysis techniques to guarantee that it-
erative advice-application is well-behaved. Our prototype
implementation is presented in Sec. 5. Sec. 6 discusses re-
lated work. Sec. 7 concludes.

2. AN OVERVIEW OF THE GAMMA LAN-
GUAGE

Our prototype language GAMMA is an aspect-oriented lan-
guage on top of a minimal object-oriented core language.
This object-oriented core language is based on the teaching
calculus L2 from Sophia Drossoupolou [4], which is similar
to Featherweight Java [6], but also has an object store and
hence supports assignments, aliasing etc. A formal syntax,
operational semantics, and type system are described in [4].
Here we will use and describe this core only informally.

GAMMA supports classes and single inheritance. The only
primitive type is bool. Methods have a return type and al-
ways one argument whose name is always x. If no argument
is required, we add a dummy argument of type bool.

GAMMA is expression-oriented, so the body of a method is
an expression. All names have to start with a lower-case
letter. This makes interoperability with Prolog a little bit
easier because then every name in this language can directly
be used as a Prolog atom. Minimal I/O is available via a

print expression that can print strings or objects.

In addition to fields and methods the class main' can contain
aspects, which consist of a keyword indicating the kind (be-
fore or after), a pointcut term (a pattern in the execution
trace) and advice, code whose execution is triggered by the
pointcut. A pointcut is basically a Prolog query (with some
restrictions) in which at least one predicate should have the
variable Now as its first argument. The value of this variable
determines at which point in the computation the advice
should be executed.

An advice is similar to a normal method but it can use uni-
fied variables of the query as expressions. If this is used
inside an advice body it always refers to the first main in-
stance that has been created.

The execution trace is represented as a collection of facts
in a Prolog database, where each fact corresponds to one
step of the interpreter. The number of the current step, or
timestamp, is always stored as the first argument of a fact.

The following tables give an overview of the facts used in
traces and their arguments:

Fact Meaning

get(T, C, A, F, V) reading field access
set(T,C, A, F, V) writing field access
calls(T, C, A, M, V) method call
endCall(T, B, R) end of method call
newObject(T, C) object creation
Arguments Meaning

A Address of target object

B Timestamp of begin of call

C Class of target/to create instance of
F Name of field

M Name of method

R Return value

T Timestamp

A% Current/new value of field

The pointcut language is closely connected with the Prolog
syntax. In fact every pointcut is a Prolog query. Pointcut
terms consist of predicates that can be combined by commas
(a comma means and in Prolog). A predicate can contain
variables (which have to start with a capital letter, like Var),
anonymous variables (_), predicates or atoms (which start
with a lower letter, like main. To negate a prolog term,
the predicate not? can be used. The special variable Now
identifies the timestamp where the pointcut matches, i.e.
the point where advice should be inserted. Variables that
have been used in the pointcut can be used as expressions
in the advice. Fig. 1 shows a short program with an aspect
which demonstrates how variables used in the query (here
Address) can easily be accessed from within the advice.

To compare variables used for timestamps, the predicates
pred(T1,T2) and its transitive closure isbefore(T1,T2)

'Due to space limitations and for the sake of clarity we sim-
plified our language: only the class main can have aspects
and after as well as around advices have been omitted
2In Prolog one should rather use \+ than not, but this syntax
is easier to parse.

34

class main extds Object {

bool var;

before set(Now,_,Address,-,-) {
print (Address)

bool main(bool x){
this.var := true

Figure 1: Class with aspect

are available. The pointcut not(set(T,_,Addr,Field,.)),
get (Now, _,Addr,Field,_), isbefore(T, Now) for example
matches read access to any field of an object that has not
been set before. In contrast, set(Now,_,Addr,Field,_),
set(T,_,Addr,Field,_), pred(Now,T) matches any assign-
ment to a field immediately followed by another assignment
to the same field. If timestamp variables are not related,
they can match any point in the trace.

More complex predicates, like the well-known cflow, can be
easily formulated as rules:

% T2 is in the control flow of the call at Ti1
cflow(T1, T2) :-

calls(T1,_,_,_,.),

endcall(T3,T1,_),

isbefore(T1,T2),

isbefore(T2,T3).

Similarly the content of the store and the call stack at each
time can be reconstructed from the set resp. calls facts
using isbefore.

3. APPLICATION EXAMPLES

Consider an environment where a set of graphical objects
are potentially manipulated by some operation. There is
a display, which should only be updated if at least one ele-
ment has been changed and the number of updates should
be minimal. Fig. 2 shows a solution in GAMMA. The point-
cut matches at the end of the execution of main.operation
if a call to point.setpos lies in its control flow.

before calls(T1, main, -, operation, _),
cflow(T1, T2),
calls (T2, point, _, setpos),
endCall(Now, T1, _) {
this.display .update(true)

}

Figure 2: A display example

This example shows how the pointcut languages allows us
to simply refer to the history of the execution, making the
aspect both short and easy to understand. In other pointcut
languages, one would have to manually store parts of the
history together with complicated imperative logic in order
to achieve the same effect.

The pointcut in Fig. 2 only refers to past events. This is
different in the next example. Fig. 3 illustrates a kind of

eager authentication, which performs authentication before,
but only if, a call to a protected database function is made
inside the control flow of server.execute. Such an aspect
may appear in a scenario where a complex command has
to be executed and it is necessary to be logged in if any
of the subcommands will require authentication during its
execution.

before calls(Now,server,_,execute,_),
cflow(Now,T),
calls (T,database,_,protected,-) {
this.db.authenticate(true)

}

Figure 3: An authentication example

By the usage of logical programming and predicates as the
base of our pointcut language we gain a great flexibility to
express temporal related pointcuts without making the lan-
guage too complex to use and understand.

4. PARADOX ASPECTS

In the preceding examples it was intuitively clear what the
semantics of the programs should be, even in the case that
a pointcut refers to the future. But we can easily construct
examples where it is hard to say how the semantics of the
program should be defined. We will discuss some of these
examples and different strategies to solve the problems these
examples impose.

As mentioned before, the execution of advice can enable
pointcuts at every other position in the computation. This
can easily produce a phenomenon that is similar to the
“grand-mother paradoxon” in time travel: an aspect whose
pointcut is enabled by the base program uses its advice to
change the control flow in such a way, that the pointcut is
not being enabled. Fig. 4 gives an example of such an as-
pect. The problem is that the trace of this program is not
consistent in any of both cases: if the advice is not exe-
cuted, its aspects pointcut is enabled but if it is executed,
its pointcut is not enabled.

class main extds Object{
bool create;
before calls(Now,_,_,foo,_),
newObject(T,a),
isbefore(Now,T) {
this.create := false

}
bool foo(bool x){
if this.create
then (new a; true)
else false

bool main(bool x){
this.create := true;
this.foo ()

Figure 4: A paradox aspect

4.1 Properties of advice application
We can view advice application in our language as a non-
deterministic transition system on traces, whereby ¢ — ¢’

35

means that the trace ' is the result of applying an advice
to the trace t.

An activation point of a trace is a position in the trace, where
advice has to be inserted due to an enabled pointcut or
inserted advice has to be removed because the corresponding
pointcut is not enabled any longer. For convenience we write
AP(t) for the activation points of a trace t. In general,
several pointcuts may be applicable to a trace (i.e., there is
more than one activation point), hence the transition system
is non-deterministic. Unfortunately, this transistion system
does not enjoy the confluence property, meaning that the
final result depends on the non-deterministic choice of the
next advice to apply. It also does not have a standardization
property, informally meaning that there is no “best” choice
for the next advice.

4.2 Traces as domains

Domain theory provides a general setting within which re-
cursive equations have a proper solution. When we look at
the process of advice application as a function on the set of
all traces of a program P, F : 7p — Tp, one way to reason
about termination is to apply the fixpoint theorem, a result
of domain theory. As mentioned before, there may be sev-
eral strategies to define such a function, so we will discuss
those functions in general. A specific selection strategy is
presented in Sec. 5.

If there is a partial order C that makes the set (7p,C) a
cpo® and if the advice application operator F is mono-
tonic and Scott-continuous w.r.t. [, then the fixpoint
theorem garantees that u(F) = ||,y F (L) exists with
F(u(F)) = p(F). This fixed point thus can be constructed
by repeatedly applying advice. The bottom element L is in
our case the trace of the base program without any advice.
The challenging part is to define F and LC.

One example to construct such an order is as follows. Let
lap(t) (least activation point of t) be the first point where
advice has to be inserted or must be removed. Furthermore,
let s = (S0y.-.58n-1), t = (to,...,tm—1), a = lap(s) and
b = lap(t) then consider the transitive and reflexive closure
Cp of the following relation:

trace of advice

SCPt €& t=1(80y-+y8a—1,U0y.-«,Uk—1,V0,--.,V—1)1)
ANb>a+k+1 (2)
An<a+l (3)

In words, a trace t is greater than another trace s, if it
can be obtained (possibly in more than one step) from s
by simply inserting advice at the earliest possible point (1).
Conditions (2)+(3) ensures that no advice will be removed,
that each new advice is always executed after the last one
and that the part of the trace after the advice invocation
does not get longer.

It is easy to see that this order makes 7p a cpo because every
chain starting with s = (so,...,sn—1) can have at most n
distinct traces. However, this condition is very restrictive
and hard to check statically. For example, pointcuts cannot

3A cpo is a partial ordered set where the supremum of each
w-chain is also contained in the set.

change the control flow after advice application in such a
way that the trace gets longer (condition (3)).

Now we need to define an advice application operator F
that is monotonous and continuous. Our general strategy
is to select always the earliest activation point in the trace
whose advice has not yet been executed. However, we need
additional restrictions in order to ensure that ¢t Cp F(t).

This can be ensured by a (conservative) static analysis of
advice bodies. We present the basic ideas for an algorithm
to identify programs that meet the desired restriction.

For each pointcut there is a set of shadows, locations in
the source code, where it is possible that it could match.
We say that an aspect A precedes another aspect B if the
earliest shadow of A is below or equal to a shadow of B in at
least one control path. Furthermore an A affects B, if the
execution of A can affect the pointcut matching of B, i.e. if
a shadow of B lies in that part of the program that can be
possibly affected by the execution of A. One condition for
the class of acceptable programs could be formulated as: if
A precedes B, then B must not affect A (and therefore
A must not affect itself) and the affect relation should
not have any cycles.

The crucial point is clearly to identify the part of a program
that can be affected by an aspect. We developed some basic
techniques, but they are rather inaccurate and inefficient, so
further work on this topic is required.

5. PROTOTYPE IMPLEMENTATION

As a result of the powerful pointcut language and execution
model, some new problems arise in determining the seman-
tics of a program. First, as pointcuts can refer to events in
the future, we can not make judgments about advice invoca-
tions before the complete trace of the execution is available.
Therefore we must run the program at least once to see,
where advice has to be executed. Another problem is that
the execution of advice itself can effect the execution of other
aspects at any point in the execution trace, after and even
before the point at which this advice has been inserted. Our
solution to these problems is presented in this section.

Our approach is to iterate advice application, beginning
with a trace that does not invoke any advice at all, to (hope-
fully) get better and better approximations of the final ex-
ecution trace. If more than one pointcut matches, the first
one is chosen to be executed. We model this procedure as an
“advice-application-operator” F which takes a trace ¢ and
returns another trace t'.

The interpreter we use to run the program creates and stores
a copy of its internal state at every step. The interpreter can
thus be reset to any point in the execution of the program.
This feature is necessary to restart the execution from the
first point where changes in the behavior are expected (due
to advice insertion or removal).

To find the points in a trace where advice has to be inserted,
the pointcuts of all aspects must be evaluated. The queries
are passed to the Prolog engine which returns a set of vari-
able bindings for each positive answer. So we can determine

36

the timestamp of the match by looking at the value of the
variable Now. These timestamps along with the associated
advices and the variable bindings describe the activation
points in the trace. The set of APs that has been identi-
fied in the current trace is called foundAPs. By 01dAPs we
denote the set of APs that has been found in the last trace
(this set is empty in the first iteration).

Now there are two things that can happen: a pointcut could
match a position it did not match before or a pointcut did
match a position in the old trace but does not in the actual
one. In the first case, the AP is in the set foundAPs\o01ldAPs
otherwise it is in 01dAPs\foundAPs. The earliest such event
(currentAP) is that a € 01dAPsAfoundAPs* with the mini-
mal timestamp (the textual order of the aspects is consid-
ered, if two APs have the same timestamp).

After determining currentAP, the interpreter (and with it
the fact database) is reset to the timestamp of that point
and the program is executed from this point in the next
iteration. The interpreter does not need to considers other
APs than currentAP because the execution trace of those
that were before stays in the database and APs that lie
in the future may become invalid due to the execution the
advice. When the advice has been inserted, the timestamp
of corresponding AP in 01dAPs must be updated, because
the matching point of the pointcut trace has moved due to
the trace produced by the advice.

When the advice has been executed, the currentAP must be
updated, because the timestamp of the matching position
in the trace has moved. A fixed-point of the iteration is
reached, if both sets, 01dAPs and foundAPs, are the same.

There are two properties of advice application that follow
from the procedure described above:

1. Advice application will only terminate if the base pro-
gram (without advice) terminates.

2. If advice must be removed at any point in the trace,
the iteration ends up in a cycle since the resulting trace
has been processed before.

The program in Fig. 5 illustrates how a pointcut can refer
to future events: it only matches those assignments to varx
which are (not necessarily immediately) followed by an as-
signment to vary. The iteration process for this example is
shown in Fig. 6. It also shows how the AP is updated after
inserting the advice.

The first property of our model, namely that advice applica-
tion will only terminate if the base program does, is indeed
very restrictive. The consequence is that certain program
parts cannot be modelled as aspects, in particular aspects
that force the program to terminate. e.g. the break condi-
tion of an algorithm. For the same reason our model cannot
capture infinite computations.

We could overcome these limitations by changing the itera-
tion process to execute advice (and maybe reset the inter-

YAAB is the symmetric difference of the sets A and B:
x € AAB = (x € A\B or x € B\A)

class main extds Object{
bool varx;
bool vary;
before set(Now,_,_,varx,_),
set(T,, ,vary,),
isbefore(now,T){
print (7in advice”)

bool main(bool x){

this.varx := true;
print ("between assignments”);
this.vary := true;
false
}
}

Figure 5: Example for a “clairvoyant” aspect

Run #1 starting at 0
=> newObject(0, main)
=> calls(1, main, iotal, main, false)
=> set(3, main, iotal, varx, true)
between assignments
=> set(4, main, iotal, vary,
=> endCall(6, 1, false)
old act.points: ()
found act.points: (3)
new act.points: (3)

Run #2 starting at 3
=> invokeAdvice(3)
in advice
=> endAdvice(4, 3)
=> set(5, main, iotal, varx,
between assignments
=> set(6, main, iotal, vary,
=> endCall(8, 1, false)
old act.points: (5)
found act.points: (5)
new act.points: (5)
Found fixed point after 2 runs.
Result is false

true)

true)

true)

Figure 6: Example for an iteration

preter to a former state) directly at the step where its point-
cut matched. This of course means to execute all queries at
every step of computation. Since efficiency is not our pri-
mary consideration this may be tolerable, but it is not clear
how and if this process can be described elegantly, for ex-
ample in terms of domains as done above.

6. RELATED WORK

Walker and Viggers [8] discuss a kind of temporal pointcuts,
called history patterns or tracecuts, to enrich the AspectJ [1]
pointcut language with the abiblity to reason about former
calls and their temporal relations. Moreover, data that has
been passed as an argument can be accessed by the advice
as it could be done via variable binding in our language.
Tracecuts are patterns that are matched against a history of
calls by a finite automaton. The implementation translates a
program with tracecuts into AspectJ source code. However,
the model of history patterns is not as rich as ours since
it considers only method calls, whereas our approach may
refer to almost any event in the computation.

Douence et al describe a pattern matching language based
on Haskell [3] which allows pointcuts to relate different
points in the execution history. The Java prototype uses

37

an event monitoring system to accomplish pattern match-
ing. The pointcut language used in this approach describes
patterns as sequences of events. This is different to our lan-
guage where the relation of joinpoints can be stated in a
predicative way.

The work of Gybels and Brichau [5] is similar to our ap-
proach as they use logic programming and unification for
pointcut matching. However, since the model behind their
pointcut language does not cover the trace, it is not possible
to encode pointcuts that relate different points in the exe-
cution. Furthermore the language only offers access to the
current joinpoint, so it is not possible to access data from
the store. Finally, the approach does not cover the usage of
bound variables inside the advice.

Static analysis of aspect interaction is discussed by Douence
et al [2], but their focus lies on detecting overlapping shad-
ows of different aspects. They argue that aspects should be
orthogonal, that means not covering the same join points,
independent of the base program they are used with.

7. CONCLUSIONS

We have presented a powerful pointcut language, that makes
it easy to write pointcuts that can reason about the execu-
tion trace and temporal relations between join points (facts)
on a very abstract level. Our approach is so general that
even referring to future events is possible. However, our
results so far have some serious limitations. We need to
find less restrictive ways to ensure termination of the ad-
vice application process. An efficient implementation and
sophisticated tools for static analysis are also part of future
work.

8. REFERENCES
[1] AspectJ homepage, 2003. http://aspectj.org.

[2] R. Douence, P. Fradet, and M. Siidholt. A framework
for the detection and resolution of aspect interactions.
In Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and
Component Engineering (GPCE’02), volume 2487 of
LNCS. Springer-Verlag, 2002.

R. Douence, O. Motelet, and M. Siidholt. A formal
definition of crosscuts. In Proc. of the Third
International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection
2001), volume 2192 of LNCS. Springer-Verlag, 2001.

S. Drossoupolou. Lecture notes on the L2 calculus.
http://www.doc.ic.ac.uk/~scd/Teaching/L1L2.pdf.

K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 60—69.
ACM Press, 2003.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. ACM
Transactions on Programming Languages and
Systems, 23(3):396-450, 1999.

[7]

[10]

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of ECOOP ’01, 2001.

K. V. Robert J. Walker. Communication history
patterns: Direct implementations of protocol
specifications. Technical report, 2004.

L. Sterling and E. Shapiro. The Art of Prolog. MIT
Press, 1994.

R. J. Walker and K. Viggers. Implementing protocols
via declarative event patterns. In Proceedings of the
ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE-12), 2004.

38

Aspectual Caml: an Aspect-Oriented Functional Language

Hideaki Tatsuzawa
Department of Computer
Science, University of Tokyo

hideaki@is.s.u-tokyo.ac.jp

ABSTRACT

We propose an aspect-oriented programming (AOP) lan-
guage called Aspectual Caml based on a strongly-typed func-
tional language Objective Caml. Aspectual Caml offers two
AOP mechanisms, namely the pointcut and advice mecha-
nism and the type extension mechanism, which gives simi-
lar functionality to the inter-type declarations in AspectJ.
Those mechanisms are not simple adaptation of the similar
mechanisms in existing AOP languages, but re-designed for
common programming styles in functional languages such
as type inference, polymorphic types, and curried functions.
We implemented a prototype compiler of the language and
used the language for separating crosscutting concerns in ap-
plication programs, including a type system separated from
a compiler of a simple language.

1. INTRODUCTION

Aspect-Oriented Programming (AOP)[7, 16] is a program-
ming paradigm for modularizing crosscutting concerns, which
can not be well modularized with existing module mecha-
nisms. Although AOP would be useful to many program-
ming languages with module mechanisms, it has been mainly
studied in the contexts of object-oriented programming lan-
guages such as Java[4, 5, 14, 15], C++[18], and Smalltalk[6,
12].

In this paper, we propose an AOP language called Aspectual
Caml based on a functional language Objective Caml. The
goal of development of Aspectual Caml is twofold. First, we
aim to enable practical AOP for development of functional
programs. Since there have been developed large and com-
plicated application programs in functional languages[13,
20], such as compilers, theorem provers[3] and software ver-
ification tools[2], AOP features should be useful to mod-
ularize crosscutting concerns also in functional languages.
Second, we aim to provide Aspectual Caml as a basis of
further theoretical studies on AOP features. Strongly-typed
functional languages, such as ML and Haskell, offer many
powerful language features based on solid theoretical foun-

Hidehiko Masuhara
Graduate School of Arts and
Sciences, University of Tokyo

masuhara@acm.org

39

Akinori Yonezawa
Department of Computer
Science, University of Tokyo

yonezawa@is.s.u-tokyo.ac.jp

dations. Aspectual Caml, which incorporates existing AOP
language features into a strongly-type functional language,
would help theoretical examination of the features.

Aspectual Caml is an AOP extension to Objective Caml,
a dialect of ML functional language. We design its AOP
features by adapting the AOP features in AspectJ, includ-
ing the pointcut and advice mechanism and the inter-type
declaration mechanism, for a functional language with poly-
morphic types and type inference. We also design the AOP
features so that they would fit key properties of strongly-
typed functional programming including type safety, type
inference, and curried functions.

The language is implemented as a translator to Objective
Caml by extending the parser and type checker of the Ob-
jective Caml compiler.

The rest of the paper is organized as follows. Section 2 in-
troduces the AOP features of Aspectual Caml. Section 3
presents our current implementation. Section 4 shows case
studies of modularization of crosscutting concerns in some
application programs with Aspectual Caml. Section 5 presents
relevant studies. Section 6 concludes the paper.

2. LANGUAGE DESIGN

This section describes the language design of Aspectual Caml.
First, we overview problems in introducing AOP features
into functional languages and solutions to those problems.
Next, we present an example of extending a small program
(which is called a base program in this paper) with an aspect.
We then discuss the design of the AOP features, namely
the pointcut and advice mechanism and the type extension
mechanism with emphases on the differences from AspectJ.

2.1 Design Issues

Although the AOP features of Aspectual Caml are similar to
the ones in AspectJ, the designing those features was not a
trivial task. Unique features in the base language (i.e., Ob-
jective Caml), compared from Java, such as the higher-order
functions, variant records, and polymorphic types, require
reconsideration of most AOP features.

Below, we briefly discuss some of the notable issues in the
design of AOP features in Aspectual Caml, and our proposed

solutions:

e ML (including Objective Caml) and Haskell programs

usually omit types in expressions thanks to the type in-
ference system, whereas types are more explicitly writ-
ten in Java and AspectJ program. Aspectual Caml
has a type inference system for pointcut and advice
descriptions.

e Strongly typed languages such as ML and Haskell of-
ten have polymorphic types. We found that polymor-
phic types in pointcuts sometimes break programmers’
intuition. This is coped with two types of pointcuts,
namely polymorphic and monomorphic pointcuts.

e Functional programs often use curried functions to re-
ceive more than one parameters. If the semantics of
call pointcut were merely capture one application to
functions, it would be inconvenient to identify second
or later applications to curried functions. To cope with
this problem, Aspectual Caml offers curried pointcuts.

e Although AOP features similar to the inter-type dec-
larations in AspectJ would be useful, they should be
carefully designed because functional programs usu-
ally represent structured data by using variant record
types, whereas object-oriented programs do by using
classes. In particular, the inter-type declarations in
AspectdJ relies on the type compatibility of classes with
additional instance variables and methods, which is
not guaranteed for the variant record types. The type
extension mechanism in Aspectual Caml therefore has
limited scope to preserve type compatibility.

2.2 Example: Extending Simple Interpreter
In this section, we will show an example of a simple pro-
gram with an aspect. The base program is an interpreter
of a small language, which merely has numbers, variables,
additions and let-terms. The aspect adds a new kind of
terms—subtractions—into the language. Since Aspectual
Caml is an extension to Objective Caml, the interpreter is
written in Objective Caml.

2.2.1 Interpreter
The interpreter definition begins with definitions for vari-
ables which are of type id, an identifier type:

type id = I of string
let get_name (I s) = s
A term is of variant record type t, which can vary over
number (Num), variable (Var), addition (Add), or let (Let)

terms:

type t

There are a few functions for manipulating environments,
whose definitions are omitted here:

let extend = (* env -> id -> int -> env *)
let lookup = (* id -> env -> int *)

let empty_env = (* env *)

The interpreter eval is a recursive function that takes an
environment and a term and returns its value:

40

aspect AddSubtraction
typet t = ... | Sub of t * t
pointcut evaluation env t = call eval env; t
advice eval_sub = [around evaluation env t]
match t with
Sub(t1l, t2) -> (eval env tl1l) - (eval env t2)
| _ -> proceed t
end

Figure 1: An aspect that adds subtraction to inter-
preter

let rec eval env t = match t with
| Num(n) -> n
| Var(id) -> lookup id env
| Add(t1, t2) ->
let e = eval env in (e tl1) + (e t2)
| Let(id, t1, t2) ->
eval (extend env id (eval env tl1)) t2

For example, the following expression represents evaluation
of let x=3+4 in x+x, which yields 14.

eval empty_env (Let(I("x"), Add(Num(3),Num(4)),
Add (Var (I("x")),Var(I("x")))))

2.2.2 Adding Subtraction to the Simple Language
The code fragment in Figure 1 shows an aspect definition
in Aspectual Caml that extends the interpreter to support
subtractions. The first line declares the beginning of an
aspect named AddSubtraction, which spans until keyword
end. The body of the aspect consists of an extension to the
data structure and a modification to the evaluation behav-
ior.

The second line is type extension that adds an additional
constructor Sub to type t so that extended interpreter can
handle subtraction terms. Within AddSubtraction aspect,
the type t has a constructor Sub as well as other construc-
tors defined in the base program. Section 2.4 explains this
mechanism in detail.

The third line defines a pointcut named evaluation that
specifies any application of an environment and a term to
eval function. The pointcut also binds variables env and t
to the parameters of eval. This is also an example of curried
pointcut that can specify applications to curried functions.
Section 2.3.2.4 will explain this in detail.

Lines 4-7 are an advice declaration named eval_sub that
evaluates subtraction terms augmented above. The keyword
around on the right hand side at the fourth line specifies that
the body of the advice runs instead of a function application
matching the pointcut evaluation. The lines 5-7 are the
body of the advice, which subtracts values of two sub-terms
when the term is a Sub constructor. Otherwise, it lets the
original eval interpret the term by applying the term to
a special variable proceed, which is bound to a function
that represents the rest of the computation at the function
application.

Note that the pointcut and the body of the advice have no
type descriptions, which is similar to other function defini-

Table 1: Kinds of Join Points in Aspectual Caml
and AspectJ

| in Aspectual Caml

l

in AspectJ

l

function call

method call

function execution

method execution

construction of a variant

constructor call

pattern matching

field get

Table 2: Summary of Primitive Pointcuts

tions in Objective Caml. The type system infers appropriate
types and guarantees type safety of the program.

2.3 Pointcut and Advice Mechanism
Aspectual Caml offers a pointcut and advice mechanism for
modularizing crosscutting program behavior. The following
three key elements explains the mechanism:

e join points are the points in program execution whose
behavior can be augmented or altered by advice dec-
larations.

e pointcuts are the means of identifying join points, and
e advice declarations are the means of effecting join points.

The design is basically similar to those in AspectJ-like AOP
languages. We mainly explain the notable differences below.

2.3.1 Join Points

Similar to AspectlJ-like languages, Aspectual Caml employs
a dynamic join point model, in which join points are the
points in program execution, rather than the points in a
program text. There are four kinds of join points in Aspec-
tual Caml, which are listed in Table 1 with their AspectJ
counterparts.

Note that the correspondences between Aspectual Caml and
AspectJ are rather subjective as functional programs and
Java-like object-oriented programs often express similar con-
cepts in different ways. For example, functional programs
often use variant records to represent compound data while
object-oriented programs use objects. Therefore we place
the pattern matching (which takes field values out of a vari-
ant record) and field get join points in the same row. There
are no field-set-like join points in Aspectual Caml since vari-
ant records are immutable!.

A join point holds properties of the execution, such as the
name of the function to be applied to and arguments. The
names of functions are those directly appear in program
text. For example, evaluation of let lookup = List.assoc
in lookup var env generates a function call join point whose
function name is lookup, rather than List.assoc. We be-
lieve that programmers give meaningful names to functions
even if the higher-order functions make renaming of func-
tions quite easy in functional programming 2.

"Many functional programming languages offer references
for representing mutable data. The operations over refer-
ences are also the candidates of join points in future version
of Aspectual Caml.

2In contrast, models of AOP languages should be tolerant

4

| syntax [matching join points

call N P, ; ...; P, | function call

exec N P; ; ...; P, | function execution

new N(Py,...,P,) construction of a variant

match P pattern matching (before
selecting a variant)

within N all join points within a
static scope specified N

Note that function call join points include those to anony-
mous functions such as (fun x -> x+1) 3.

2.3.2 Pointcuts

A pointcut is a predicate over join points. It tests join points
based on the kinds and properties of join points, and binds
values in the join point to variables when matches.

2.3.2.1 Primitive Pointcuts

Similar to AspectJ, Aspectual Caml has a sublanguage to
describe pointcuts. Table 2 lists the syntax of primitive
pointcuts and kinds of join points selected by respective
pointcuts. In the table, N denotes a name pattern and P;
denotes a parameter pattern.

A name pattern N is a string of alphabets, numbers, and
wildcards followed by a type expression. It matches any
function or constructor whose name matches the former
part, and whose type matches the latter part. When call
or exec pointcuts use a wildcard in a name pattern N,
they match calls or executions of any function including an
anonymous function. The type expression can be omitted
for matching functions of any type.

A parameter pattern P is a pattern that used to describe
a formal parameter of a function in Objective Caml®. It is
either a variable name, or a constructor with parameter pat-
terns, followed by a type expression. It matches any value
of the specified type, or any value that is constructed with
the specified constructor and the field values that match re-
spective the parameter patterns. Again, the type expression
can be omitted. For example, “x:int” matches any inte-
ger. “Add(Num(x),Var(y))” matches any Add term whose
first and second fields are any Num and Var terms, respec-
tively. Note that parameter patterns with constructors are
basically runtime conditions. This is similar to args, this
and target pointcuts in AspectJ which can specify runtime
types of parameters.

Pointcut within(/N) matches any join point that is created
by an expression appearing in a lexical element (e.g., a func-
tion definition) matching N. In order to specify function
definitions nested in other function definitions, the pattern

with renaming of variables. MiniAML [21], for example,
distinguishes between variable names and signatures that
pointcuts match by introducing labels into the calculus.
3In Objective Caml, it is simply called a “pattern”, but we
refer it to as a “parameter pattern” for distinguishing from
the name patterns.

N can use a path expression, which is not explained in the
paper.

2.3.2.2 Parameter Binding

The parameter patterns in a primitive pointcut also bind
parameters to variables. For example, when string "abc"
is applied to function lookup and there is a pointcut call
lookup name, the pointcut matches the join point and binds
the string "abc" to the variable name so that the advice body
can access to the parameter values. When a pattern has an
underscore character (“.”) instead of a variable name, it
ignores the parameter value.

2.3.2.3 Combining and Reusing Pointcuts
Aspectual Caml offers various means of combining and reusing
pointcuts similar to AspectJ. There are the operators for
combining pointcuts, namely and, or, not, and cflow. It
also supports named pointcuts. For example, the line 3 in
Figure 1 names a pointcut expression (call eval env; t)
evaluation,

pointcut evaluation env t = call eval env; t

which can be used in a similar manner to primitive pointcuts
in the subsequent pointcut expressions, like evaluation env
t at line 4 in the same figure.

2.3.2.4 Pointcuts for Curried Functions

The call and exec pointcuts also support curried functions.
For example, call eval env; t matches the second par-
tial application to function eval. Therefore, when an ex-
pression eval empty_env (Num 0) is evaluated, the point-
cut matches the application of (Num 0) to the function re-
turned by the evaluation of eval empty_env. The pointcut
matches even when the partially applied function is not im-
mediately applied. As a result, when let e = eval env in
(e t1) + (e t2) is evaluated, the applications of t1 and t2
to e match the above call pointcut.

The following definition gives more precise meaning to call
pointcuts:

e call N P; matches evaluation of an expression (eg
e1) when the expression eg matches the name pattern
N and the expression e; matches the parameter pat-
tern P;.

e call N Pi; .; P, matches evaluation of an ex-
pression (ep e1) when the evaluated value of eg is
returned from a join point matching to call N P;;

.3 P(n—1) and the expression e; matches the param-
eter pattern Py.

Similarly, exec pointcuts support curried functions on the
callee’s side.

Section 3.4 presents how this advice declarations with a cur-
ried pointcut can be implemented.

2.3.2.5 Type Inference for Pointcuts

When types are omitted in a pointcut expression, they are
automatically inferred from the advice body in which the
pointcut is used. This fits with the programming style in

42

Objective Caml, where types can be omitted as much as
possible.

For example, the advice eval_sub in Figure 1 has no type
expressions in the pointcut evaluation env t. However, it
is inferred from the expressions in the advice body, that the
types of the variables env and t and the return type of the
function are the types env, t and int, respectively. As a
result, the pointcut, whose definition is call eval env; t,
matches applications to a function named eval and of type
env — t — int.

The type inference gives the most general types to the vari-
ables in the pointcuts. In the following advice definition,
the system gives fresh type variables o and (8 to variables
env and t, respectively:

advice tracing = [around call eval env; t]
let result = proceed t in print_int result; result

As a result, the pointcut matches any applications to func-
tions whose type is more specific than « — 3 — int. As a
result, this advice captures applications to eval as well as
other eval functions that takes two parameters and returns
integer values.

2.3.2.6 Polymorphic and Monomorphic Pointcuts
Aspectual Caml provides a mechanism that programmers
can make the types in a named pointcut either polymor-
phic or monomorphic. This is useful when there are more
than one advice definition that uses the same named point-
cut. When a named pointcut is defined with the keyword
concrete, it is a monomorphic pointcut whose type vari-
ables can not be instantiated. Otherwise, it is a polymor-
phic pointcut whose type variables are instantiated when the
pointcut is used in an advice definition.

For example, the evaluation pointcut in Figure 1 is poly-
morphic. It matches any function applications eval of type
Yapvy.aa — 3 — 7. When evaluation used in advice eval_
sub, the type system instantiates «, 3, and v and then infers
the types with respect to the advice body. Therefore, an-
other advice definition that uses evaluation with different
types do not conflict with the previous advice definition:

advice tracing = [before evaluation env t]
print_string env; print_string t
end

This mechanism is quite similar to the let-polymorphism in
ML languages.

Although the polymorphic pointcuts are useful to define gen-
eralized pointcuts, they are sometimes inconvenient when
the programmer wants to specify the same set of join points
at any advice that uses the same pointcut. Monomorphic
pointcuts are useful in such a situation. Consider the follow-
ing aspect definition that prints messages at the beginning
and end of any function application:

aspect Logging
pointcut logged n = call 77§ n
advice log_entry = [before logged n]
print_string ("\nenters with "~ (string_of_int n))

advice log_exit = [after logged nl
print_string "\nexits"
end

Since logged is a polymorphic pointcut that matches any
application to functions of type YafB.ao — (3, the first advice
matches only functions that take integer values as their pa-
rameter, whereas the second matches any function. This is
because the types in the pointcut are inferred at each advice
definition.

By declaring logged pointcut with the keyword concrete
and type expression to the variables that are used in the
advice:

concrete pointcut logged n = call ?7$ (n:int)

logged pointcut becomes monomorphic that matches any
application to functions of type int — a. With this point-
cut definition, the two advice definitions are guaranteed to
advise the same set of join points because the types in the
pointcut will not be instantiated further.

2.3.3 Advice

Advice, defined with a pointcut, gives behaviors at, before,
or after join points, these timing are decided by timing spec-
ifiers around, before, and after respectively, specified by
the pointcut. In the body of advice, programmers can use all
top-level variables, variables bound by the pointcut, and the
special function proceed (available only in around advice).
Since proceed means the replaced behavior, it restarts the
original execution when it takes an argument.

For preserving type safety, the body expression of around
advice must have the same type as returning values of spec-
ified join points. In addition, that of before and after
advice must have the type unit. In the example of subtrac-
tion extension, the body of eval_sub has the type int that
is the same type as a result value of eval.

2.4 Type Extension Mechanism

The type extension mechanism allows aspects to define extra
fields or constructors in variant types in a base program.
The former mechanism can be seen as a rough equivalent to
the inter-type instance variable declarations in AspectJ.

Despite the simplicity of the mechanism, we believe that
it is as crucial as the pointcut and advice mechanism. As
you can observe in example programs in AspectJ, not a few
crosscutting concerns contain not only behavior (which is
implemented by the pointcut advice mechanism) but also
data structures (which are implemented by the inter-type
declarations).

2.4.1 Defining Extra Constructs

One of the abilities of the type extension mechanism is to
define additional constructors to existing variant types. A
variant type definition type+ T = ... | C adds construc-
tor C to existing type whose type name is 7. In Figure 1,
we have already seen an example that adds Sub constructor
to the type t.

The constructors added to a variant type by aspects often
make pattern matching non-exhaustive. In other words, a

43

base program that originally defined the variant type usu-
ally has functions that process for each variant differently
(e.g., eval in the simple interpreter). Therefore, an aspect
that added a constructor to a variant type would also need
to advise such functions so as to process the case for the
additional constructor. In the example Figure 1, the ad-
vice eval_sub processes the constructor Sub for the function
eval, which otherwise reports non-exhaustiveness warnings.

2.4.2 Defining Extra Fields

The type extension mechanism can also allow to define ad-
ditional fields to constructors of existing variant types. A
variant type definition

typet+ Tp = C of * Th{ei} * --- x Tp{e,}

adds fields of type Ti,...,7T, to a constructor C' of type
Tov. The expressions e, ..., e, in the curly brackets specify
default values to the respective fields.

For example, assume we want to associate a number (e.g.,
a line number in a source program) to each variable in the
simple language of Section 2.2. A solution with the type
extension mechanism is to add an integer field to ident type
by writing the following definition:

type+ ident = I of ... * int{0}
As the base program originally defines ident type as type
ident = I of string, a value created by the constructor I

has a pair of string and integer.

Extended fields are available only in the aspects that define
the extension. This means that the type of the constructor
look differently inside and outside of the aspect:

e Inside the same aspect, the constructor has the ex-
tended type. Therefore, I ("x",1) is a correct ex-
pression in the aspect.

e Outside the aspect, the constructor retains the original
type, and yields a value that has the values of default
expressions in the extended fields. Therefore, I "x" is
a correct expression outside the aspect, which yield a
value that has "x" and 0 in its string and integer fields,
respectively.

3. IMPLEMENTATION

‘We implemented a compiler, or a weaver of Aspectual Caml
as a translator to Objective Caml. Many parts of the com-
piler are implemented by modifying internal data structures
and functions in an Objective Caml compiler as the AOP
features deeply involve with the type system.

The compiler first parses a given program to build a parse
tree. Then the next five steps process the parse tree:

1. infers types in the base function definitions;
2. infers types in the aspect definitions;

3. modifies variant type definitions in the base program
by processing type extensions;

4. simplify advice definitions; and

5. inserts applications to advice bodies into matching ex-
pressions.

Finally, it generates Objective Caml program by unparsing
the modified parse tree.

Below, those five steps are explained by using the example
in Section 2.2.

3.1 Type Inference for Base Functions

The types in the base function definitions are inferred by
using the internal functions in the original Objective Caml
compiler. After the type inference, all variables in the func-
tions are annotated with types (or type schemes):

type id = I of string
let (get_name:id->string) = fun (I(s:string)) -> s

type t = (* omitted *)
let extend = (* ibid. *)
let lookup = (* ibid. *)

let empty_env = (* ibid. *)
let rec (eval:env->t->int) =
fun (env:env) -> fun (t:t) -> match t with
| Num(n:int) -> n
| Var(id:id) -> lookup id env
| Add((t1:t), (t2:t)) ->
let (e:t)->int = eval env in (e t1) + (e t2)
| Let((id:id), (t1:t), (t2:t)) ->
eval (extend env id (eval env t1)) t2

3.2 Type Inference for Aspects

The types in aspect definitions are inferred in a similar man-
ner to the type inference for the base functions. Notable

points are the treatments of polymorphic/monomorphic point-

cuts, and scope of the variables.

The type of a pointcut is a type of join points that can
match the pointcut and a type environment for the vari-
ables in the pointcut. The type of matching join points is
decided by the shapes of primitive pointcuts in the point-
cut and the types of the variables. The variables bound by
the pointcuts have unique type variables otherwise explicitly
specified. For polymorphic pointcuts, those type variables
are quantified with universal quantifiers that can be instan-
tiated at the advice definitions. Monomorphic pointcuts use
the special type variables that can not be instantiated in the
later processes.

For example, evaluation pointcut in Figure 1 has, type of
Vapfy.co — B — 7 for the matching join points, and [env :
B,t :] for variables.

Note that the type inference of pointcuts does not use the
types of function names; e.g., the type of eval in the base
program. This is because the function names in pointcuts
do not necessarily refer to specific functions in the base pro-
gram, but they rather refer to any function that have match-
ing name.

The type inference of an advice definition is basically similar
to the type inference of a function definition, but it takes
types of parameters from the types of the pointcut, and

44

gives a type to proceed variable that is implicitly available
in the advice body. Given an advice definition advice a =
[around call p] e where p is a pointcut of join point type
ay — -+ — an — (and variable type p, the type of e is
inferred under the global type environment extended with p
and [proceed : a, — f].

For example, type inference of eval_sub advice uses a global
type environment extended with [proceed : 8 — ~,env :
a,t : f], and assigns types as follows:

advice eval_sub
= [around evaluation (env:env) (t:t)]
(* let proceed:t->int *)
match t with
Sub((t1:t), (t2:t)) ->
(eval env t1) - (eval env t2)
| _ => proceed t

Note that the types of eval and Sub are taken from the
global type environment, which eventually instantiates the
types of other variables including those in the pointcut.

3.3 Reflect Type Modifications in Base Pro-
grams

In this phase, type extensions are reflected in the base pro-
grams. The definition of types are changed according to
the aspects. Additionally, the default values are added to
expressions whose fields are extended by the aspects.

3.4 Simplify Advice Definitions

The next step is to transform the advice definitions into sim-
pler ones in order to make the later weaving process easier.

First, it transforms every before and after advice definition
into around advice, by simply inserting an application to
proceed at the beginning or end of the advice body.

Second, it transforms an advice declaration that uses curried
pointcuts so that all call or exec pointcuts takes exactly
one parameter. The next is a translated advice definition
from eval_sub (inferred types are omitted for readability):

advice eval_sub = [around call eval env]
let proceed = proceed env in
fun t -> match t with
Sub(tl, t2) -> (eval env tl1) - (eval env t2)
| _ -> proceed t

When an environment is applied to eval, the transformed
advice runs and returns a function that runs the body of the
original advice when it takes a term. In other words, eval
is advised to return a function that runs the original advice
body.

Generally, it transforms an advice definition with a curried
pointcut by iteratively removing the last parameter in the
curried pointcut by using the following rule that transforms
an advice definition:

advice a = [around call f vi; ---; ¥n]
e

into the next one:

advice a = [around call f wvi; <3 Un—1]
let proceed = proceed v,_1 in

fun v, -> e

There is a subtle problem with this approach when curried
pointcuts are used with a disjunctive (or) operator, which
is left for future research. For example, the following advice
causes the problem:

advice trace_eval_or_e =
[around (call eval _; t) || (call e t)]
print_string "eval"; proceed t

When we evaluate eval empty_env (Add(Num(0), Num(1)))
with this advice, evaluation of each subexpression of Add is
advised twice if the advice declaration is translated by fol-
lowing the above rule. This is because the advice is trans-
lated into the following two advice declarations:

advice trace_eval_or_e_1 = [around (call eval env)]
let proceed = proceed env in
fun t -> print_string "eval"; proceed t

advice trace_eval_or_e_2 = [around (call e t)]
print_string "eval"; proceed t

Since eval has a subexpression let e = eval env in (e
t1) + (e t2), the first advice modifies the value of e to run
the body of the advice, and the second advice runs the body
of the advice at e t1 and e t2, respectively. Consequently,
evaluation of e t1 and e t2 runs the body of advice twice.

3.5 Weave Advice Definitions

The last step is to insert expressions that runs advice bodies
at appropriate times in the base functions. It first trans-
forms each advice definition into a function definition. It
then walks through all expressions (i.e., join point shadows)
in the function definitions, and inserts an application to an
advice function when it matches the pointcut of the advice.

Given an advice definition, the first step is to simply gener-
ate a recursive function that takes proceed parameter fol-
lowed by the parameters to the advice. For example, it
generates the following function for eval_sub advice (again,
types are omitted for readability):

let rec eval_sub proceed env =
let proceed = proceed env in
fun t -> match t with

Sub(t1l, t2) -> (eval env tl1) - (eval env t2)

| _ -> proceed t

The second step is to rewrite the bodies of the base func-
tions® so that they call advice functions at appropriate places.
By traversing the expressions in the given program, for each
expression type of function application, lambda abstraction,
constructor application, or pattern matching for structured
values, it looks for advice definitions that have the respec-
tive kind of primitive pointcuts. When the name pattern of
the pointcut matches the name in the expression, and the
type of the pointcut is more general than the type of the

4Precisely, the base functions also include the advice bod-
ies. This enables to advise execution of advice as well as
execution of function.

45

expression, it replaces the expression with an application to
the advice function.

For example, eval function in the base program has a sub-
expression (eval env) where eval:env->t->int and env:env.
This application sub-expression matches the call pointcut
in eval_sub as the types of the join point and the pointcut
are the same. In this case, it replaces the expression with
({(eval_sub) eval env) where ((eval_sub) is an expression
that references the advice function (explained below).

It is a little tricky to define and reference advice functions
due to recursiveness introduced by advice. An advice def-
inition has a global scope; it can advise any execution in
any module and it also can use global functions defined in
any module. Consequently, advice definitions can introduce
recursion into non-recursive functions in the original pro-
gram. For example, the following code fragment recursively
computes factorial numbers by advising the non-recursive
function fact[1]:

let fact n =1
aspect Fact
advice realize = [around exec fact n]
if n=0 then proceed n else nx(fact (n-1))
end

In order to allow advice to introduce recursion, we proposed
two solutions:

e Define advice functions in a recursive module[17] in
Objective Caml. As recursive modules allow mutual
recursion between functions across modules, this would
directly solve the problem.

e Reference advice functions via mutable cells. In this
solution, the translated program begins with defini-
tions of mutable cells that hold advice functions. The
subsequent function definitions run advice functions
by dereferencing from those mutable cells. Finally, af-
ter defined advice functions, the program stores the
advice functions into the mutable cells.

Although the latter solution is trickier, our current imple-
mentation uses it since the recursive modules are not avail-
able in official Objective Caml implementations as far as the
authors know.

After finished above processes, the compiler generates the
following translated code for the example program:

(* define mutable cells for advice functions *)
let eval_sub_ref = ref (fun _ -> failwith "")
(* definitions for id, t and env are omitted *)
let rec eval env t = match t with
| Num(n) -> n
| Var(id) -> lookup id env
| Add(t1, t2) ->

let e = leval_sub_ref eval env in

(e t1) + (e t2)

| Let(id, t1, t2) ->
leval_sub_ref
eval
(extend env id (l!eval_sub_ref eval env t1))
t2

(*x advice function *)
let rec eval_sub proceed env =
let proceed = proceed env in
fun t -> match t with
Sub(tl, t2) ->
(leval_sub_ref eval env tl1) -
(leval_sub_ref eval env t2)
| _ -> proceed t
(* store advice function into mutable cell *)
let _ = eval_sub_ref := eval_sub

Note that all applications to eval function, including those
in the advice body, are replaced with applications to !eval_-
sub_ref eval. The eval_sub_ref is defined at the begin-
ning of the program with a dummy value, and assigned
eval_sub function at the end of the program.

3.6 Implementation Status

Thus far, we developed a prototype implementation® of As-
pectual Caml. Although some of the features discussed in
the paper are not available yet, it supports essential fea-
tures for validating our concept, including the type exten-
sion, around advice, and most kinds of primitive pointcuts
except for wildcarding. In fact, the next section introduces
an example that can be compiled by our prototype imple-
mentation.

The current implementation has approximately 24000 lines
of Objective Caml program (including 2000 lines of our mod-
ified and additional parts), including the parser and type in-
ference system that are modified from the ones in the origi-
nal Objective Caml compiler. Although it would be theoret-
ically possible to directly pass the translated parse tree to
the back-end Objective Caml compiler, our compiler gener-
ates source-level program by unparsing the parse tree. This
is mainly for the ease of development and for debugging.

4. APPLICATION PROGRAMS

Among several small application programs that we have
written in Aspectual Caml, we briefly sketch two of them.

The one is, as we have seen thought the paper, to augment
an interpreter of a simple language with additional kinds
of terms, such as subtraction. Although it is a very small
program, the aspect illustrates its usefulness for pluggable
extension; since the aspect does not require to change the
original interpreter definitions, we can easily fall back to the
original language.

The second application program is larger. It extends a com-
piler of an untyped language to support static type system.
The base part of the program define types for the parse trees
of the source and intermediate languages and functions that
translate the parse tree in the source language into the in-
termediate language called K-normal forms. The aspects
extend the type of the source parse tree with type informa-
tion, and modifies the transformation functions to carry out
type inference during the transformation.

The aspects in the program can improve comprehensibil-
ity of the compiler implementation in particular educational

5Available at
hideaki/acaml/ .

http://www.yl.is.s.u-tokyo.ac.jp/~

46

purposes. Since the translation rules in the original can be
complicated by the types, separating the compiler into the
one for untyped language and the extension for types would
clarify both the core translation rules and the interaction
between translations and type system.

The second program, which consists of approximately 100
lines of base program and 100 lines of aspect definitions, is
shown in Appendix A.

5. RELATED WORK

AspectJ[14, 15] is the first AOP language that offers both
the pointcut and advice and inter-type declaration mecha-
nisms. Aspectual Caml is principally designed by following
those mechanisms. However, we see AspectJ-family of lan-
guages might be too complicated to theoretically study the
AOP features as they primarily aim practical languages. For
example, AspectJ 1.2 compiler type checks the following ad-
vice declaration:

Object around() : call(Integer *.x(..))
{ return new Float(0); }

even though it could cause a runtime error if applied to an
expression like Integer.decode("0").intValue(). A sim-
pler language that yet has a notion of polymorphism would
help to reason about such a situation.

There are several proposals of theoretical models of AOP
features. As far as the authors know, most work merely on
the pointcut and advice mechanism. Aspect SandBox[22]
describes a semantics of an dynamically-typed procedural
language with a pointcut and advice mechanism. Tucker
and Krishnamurthi presented a pointcut and advice mech-
anism in dynamically-typed functional languages[19]. Mini-
AML is a core calculus for expressing the pointcut and ad-
vice mechanism in strongly-typed functional languages[21].
Such a calculus would be suitable to describe the language
design of Aspectual Caml, which is currently explained at
the source language level. AspectML is an AOP extension to
Standard ML with the pointcut and advice mechanism|21].
The semantics of AspectML is defined as a translation into
MiniAML. TinyAspect is a model of pointcut and advice
mechanism for strongly-typed languages with ML-like mod-
ules[1]. It proposes a module system for aspects so as to
protect join points in a module from aspects outside the
module.

From the application programmers’ viewpoint, Aspectual
Caml has several unique language features that can not be
found in those theoretical models, including polymorphism
in pointcuts and advice, various kinds of pointcuts other
than function calls, and the type extension mechanism. On
the other hand, those models are theoretically sound; i.e.,
they come with static and dynamic semantics with proven
type soundness. Those properties of Aspectual Caml are to
be shown in future.

There are several studies for adding fields or constructors
into existing types, but not in the context of aspect-oriented
programming. Type-safe update programming provides a
means of extending existing data types[8], which inspired
the type extension mechanism in Aspectual Caml. Poly-

morphic variants[10] allow to define functions that manipu-
late variant records without prior declaration of the variant
type. This can improve code re-usability of a program when
it uses polymorphic variants instead of ordinary variants[11].
Since there have been many programs that developed with
ordinary variants, we believe that the polymorphic variants
and our type extension mechanism would complement each
other.

6. CONCLUSION

This paper presented the design and implementation of As-
pectual Caml, an AOP functional language. The language
design aims at developing practical applications by adapting
many AOP features in existing AOP languages. In order
to fit for the programming styles in strongly-typed func-
tional languages, we reconsidered AOP features, including
type inference of aspects, polymorphism in pointcuts, and
type extension mechanisms. We believe that those features
would serve a good basis for further theoretical development
of AOP features such as type safety.

A compiler of an Aspectual Caml subset is implemented as a
translator to Objective Caml. It is capable to compile non-
trivial application programs in which base and aspect defi-
nitions deeply interact. Those application programs would
also demonstrate that AOP is as useful in functional pro-
gramming as in object-oriented programming.

We plan to work more on the design and implementation of
Aspectual Caml. In particular, a module system for aspects
that would nicely work with the ML module system would
be needed. We also consider further polymorphism in advice
bodies so as to easily define type universal aspects like trac-
ing. One idea is to integrate the language with G’Caml[9]
so that advice can use functions that can examine values in
different types.

7. ACKNOWLEDGMENT

We would like to thank Jun Furuse for his valuable advice
to the language design and for his expert knowledge on the
implementation Objective Caml compiler. We would also
like to thank the members in the Yonezawa’s research group
and the Programming Language Principle group at Univer-
sity Tokyo for their helpful discussion. We are grateful to
anonymous reviewers for their beneficial comments.

8. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about
advice. In R. L. Curtis Clifton and G. T. Leavens,
editors, FOAL200/, Technical Report TR#04-04,
Department of Computer Science, lowa State
University, Mar. 2004.

2

T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
Conference record of Symposium on Principles of
Programming Languages, pages 1-3, 2002.

Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development—Coq’Art: The
Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 2004.

3]

47

[4] J. Bonér. What are the key issues for commercial aop
use: how does aspectwerkz address them? In Proc. of
AOSD 04, pages 5-6. ACM Press, 2004. Invited
Industry Paper.

[5] B. Burke and A. Brok. Aspect-oriented programming
and JBoss. Published on The O’Reilly Network, May
2003. http://www.oreillynet.com/pub/a/onjava/

2003/05/28/aop_jboss.html.

[6] B. de Alwis and G. Kiczales. Apostle: A simple
incremental weaver for a dynamic aspect language.
Technical Report TR-2003-16, Dept. of Computer

Science, University of British Columbia, 2003.

T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming. Communications of the
ACM, 44(10):29-32, Oct. 2001.

[7

[8] M. Erwig and D. Ren. Type-safe update
programming. In ESOP 2003, volume 2618 of LNCS,

pages 269-283, 2003.

(9] J. Furuse. Eztensional Polymorphism: Theory and
Application. PhD thesis, Université Denis Diderot,

Paris, Dec. 2002.

J. Garrigue. Programming with polymorphic variants.
In ML Workshop, 1998.

[10]

[11] J. Garrigue. Code reuse through polymorphic
variants. In Workshop on Foundations of Software

Engineering, Sasaguri, Japan, Nov. 2000.

[12] R. Hirschfeld. Aspects - AOP with squeak. In
Workshop on Advanced Separation of Concerns in

Object-Oriented Systems (OOPSLA 2001), Oct. 2001.

[13] J. Hughes. Why functional programming matters.

Computer Journal, 32(2):98-107, 1989.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. Getting started with
AspectJ. Communications of the ACM, 44(10):59-65,

Oct. 2001.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of

Aspect]J. In ECOOP 2001, pages 327-353, 2001.

[16] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and

S. Matsuoka, editors, ECOOP ’97, number 1241 in
LNCS, pages 220-242, Jyvaskyla, Finland, 1997.

Springer-Verlag.

[17] X. Leroy. A proposal for recursive modules in
Objective Caml. http://cristal.inria.fr/~

xleroy/publi/recursive-modules-note.pdf.

[18] O. Spinczyk, A. Gal, and W. Schroder-Preikschat.
AspectC++: An aspect-oriented extension to C++.
In Proc of TOOLS2002, pages 18-21, Sydney,

Australia, Feb. 2002.

D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In Proc. of
AOSD2003, pages 158-167. ACM Press, 2003.

[19]

[20] P. Wadler. Functional programming: An angry
half-dozen. SIGPLAN Notices, 33(2):25-30, 1998.

[21] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In ICFP2003, 2003.

[22] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In R. Cytron and G. T. Leavens,
editors, FOAL2002, Technical Report TR#02-06,
Department of Computer Science, lowa State
University, pages 1-8, Enschede, The Netherlands,
Apr. 2002.

APPENDIX

A. AN EXAMPLE OF COMPILER WRIT-
TEN IN ASPECTUAL CAML

A.1 Base Program: A Simple Compiler

(¥type of identifiersx)
type ident = I of string
let ppI (I(x)) = x
(*type of immediate values*)
type imm =
| Int of int
| Float of float
(¥type of terms*)
type syntax =
| S_Let of ident * syntax * syntax
S_Var of ident
S_LetRec of s_fundef list * syntax
S_App of syntax * syntax list
S_NegInt of syntax
S_SubInt of syntax * syntax
S_IfLEInt of syntax * syntax * syntax * syntax
| S_Imm of imm
(*mutually recursive functionsx)

and s_fundef = { s_name : ident;
s_args : ident list;
s_body : syntax }

(*type of terms after K normalizingx)
type knormal =

| K_Let of ident * knormal * knormal
| K_Var of ident
| K_LetRec of k_fundef list * knormal
| K_App of ident * ident list
| K_NegInt of ident
| K_SubInt of ident * ident
| K_IfLEInt of ident * ident * knormal * knormal
| K_.Imm of imm
d

and k_fundef = { k_name : ident;
k_args : ident list;
k_body : knormal }

(*return a fresh identifierx*)
let fresh_knormal =
let r = ref 0 in
fun () -> (incr r;
I(("_knormal_" ~ (string_of_int !r))))
(*K normalizing for the constructor LetRecx)
let rec knormal_letrec fundef = match fundef with
0->10
| {s_name = ident;
s_args = ident_list;
s_body = expl}::tl ->
{k_name = ident;
k_args = ident_list;
k_body = (knormal exp)}::(knormal_letrec tl)
(*K normalizing for the constructor App*)
and knormal_app exp explist =
(*omitted for limited spacex*)
(*K normalizingx)

48

and knormal = function
S_Var(x) -> K_Var(x)
S_NegInt(exp) ->
let £ x = K_NegInt(x) in
insert_let (knormal exp) f
S_SubInt(expl, exp2) ->
insert_let (knormal expl)
(fun x ->
insert_let (knormal exp2)
(fun y -> K_SubInt(x, y)))
S_IfLEInt(expl, exp2, exp3, exp4) —>
insert_let (knormal expl)
(fun x ->
insert_let (knormal exp2)
(fun y ->
K_IfLEInt(x, y,
knormal exp3,
knormal exp4)))

S_Let(ident, expl, exp2) ->

K_Let(ident, knormal expl, knormal exp2)
S_LetRec(fl, exp) ->

K_LetRec(knormal_letrec fl, knormal exp)
S_App(exp, explist) -> knormal_app exp explist
S_Imm(i) -> K_Imm(i)
and insert_let e c = match e with

K_Var(x) -> ¢ x
| exp -> let fresh = fresh_knormal () in
K_Let(fresh, exp, c fresh)

(*K normalizing mainx)
let knormal_main s_exp = knormal s_exp

A.2 Aspect: Addition of Typing

aspect AddType
(*type of types for expressionsx)
type typ =
Tint
| Tfloat
| Tvar of typ option ref
| Tfun of typ list * typ
(xtype extension of identifiers for types*)
typet+ ident = I of ... * typ{Tvar(ref None)}
(*returns fresh variables with types*)
let fresh_knormal_with_type =
let r = ref 0 in
fun typ -> (incr r;
I("_knormal_" ~ (string_of_int !'r), typ))
(xfind out concrete type to short cut constructors Tvarx)
let rec get_type = function
Tvar ({contents = Some(t)}) -> get_type t
| Tfun(t_list, t) -> Tfun(List.map get_type t_list,
get_type t)
|t >t
(*x occur check *)
let rec occur rl1 = function
Tint | Tfloat -> false
| Tfun(t2s, t2’) -> List.exists (occur ri1) t2s
|l occur r1 t2°
Tvar(r2) when rl == r2 -> true
| Tvar({ contents = None }) -> false
| Tvar({ contents = Some(t2) }) -> occur ril t2
exception Unify of typ * typ
(*unification of two types*)
let rec unify t1 t2 =
(*omitted for limited spacex*)
(*typing after K normalizingx)
let rec id_typing k_exp t_env = match k_exp with
K_Var(I(x, typ)) -> begin try
let typl = List.assoc x t_env in
unify typ typl; typ
with Not_found ->
failwith ("unbound_variable: " x) end
| K_NegInt(I(_, typ)) -> unify typ Tint; typ
| K_SubInt(I(_, typl), I(_, typ2)) —->

unify typl Tint; unify typ2 Tint; Tint
| K_Let(I(name, typ), k_el, k_e2) ->
let typl = id_typing k_el t_env in
unify typl typ;
id_typing k_e2 ((name, typl)::t_env)
| K_LetRec(k_fundef_list, k_e) ->
let new_t_env =
id_typing_letrec k_fundef_list t_env in
id_typing k_e new_t_env
| K_App(id, id_list) ->
id_typing_app id id_list t_env
| K_IfLEInt(I(_, typl), I(_, typ2), k_el, k_e2) ->
unify typl Tint; unify typ2 Tint;
let kel_typ = id_typing k_el t_env in
let ke2_typ = id_typing k_e2 t_env in
unify kel_typ ke2_typ;
kel_typ
| K_Imm (Int _) -> Tint
| K_.Imm (Float _) -> Tfloat
(*typing after K normalizing
for the constructor LetRec *)
and id_typing_letrec k_fundef_list t_env =
(¥omitted for limited spacex)
(*typing after K normalizing for the constructor App*)
and id_typing_app fun_id arg_ids t_env =
(*omitted for limited spacex*)
(*a flag to judge if a call to knormal is recursivex)
let rec flag = ref false
(*adding typing expression after K normalizingx)
advice knormal_with_typing =
[around (call knormal s_exp)]
if not !flag

then
let _ = flag := true in
let k_exp = proceed s_exp in
let _ = id_typing k_exp [] in
let _ = flag := false in k_exp
else

let k_exp = proceed s_exp in k_exp
end

49

50

MiniMAO: Investigating the Semantics of Proceed’

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science
lowa State University
229 Atanasoff Hall
Ames, lowa 50010-1041

{cclifton,leavens}@cs.iastate.edu

ABSTRACT

This paper describes the semantics of MiniMAO|, a core aspect-
oriented calculus. Unlike previous aspect-oriented calculi, it allows
around advice to change the target object of an advised operation
before proceeding. MiniMAQO; accurately models the ways As-
pect] allows changing the target object, e.g., at call join points.
Practical uses for changing the target object using advice include
proxies and other wrapper objects.

In addition to accurate modeling of bindings for around advice,
MiniMAO, has several other features that make it suitable for the
study of aspect-oriented mechanisms, such as those found in As-
pect]. Like Aspect], the calculus consists of an imperative, object-
oriented base language plus aspect-oriented extensions. MiniMAO
has a sound static type system, facilitated by a slightly different
form of proceed than in Aspect].

1. INTRODUCTION

This paper describes MiniMAQ), a core aspect-oriented [13] cal-
culus. MiniMAOQ; is designed to explore two key issues in reason-
ing about operations in aspect-oriented programs:

— when advice may change the target object of the operation,
possibly affecting dynamic method selection, and

— when advice may change or capture the arguments to, or re-
sults from, the operation.

MiniMAO; is sufficiently expressive to encode key aspect-oriented
idioms. But by minimizing the set of features, we arrive at a core
language that is sufficiently small as to make tractable formal proofs
of type soundness and—in planned extensions—proofs of desired
modularity properties and verification conditions.

In this paper we describe the dynamic semantics of MiniMAO),
and an interesting portion of its type system. We also state its
soundness theorem. We assume that the reader is familiar with the
basic concepts of aspect-oriented programming as embodied in the
Aspect] programming language [12]. Because of space limitations,
we refer interested readers to a companion technical report [4] for
details that we omit here. We also leave the study of reasoning
issues to future work.

For clarity, we begin with a core object-oriented calculus with
classes. We then extend this object-oriented calculus with aspects
and advice binding.

*Supported by NSF grants CCF-0428078 and CCF-0429567.

FOAL 05 Chicago, Illinois USA
Copyright (©) 2005, Curtis Clifton and Gary T. Leavens.

51

P:=decl" e
decl :: = class ¢ extends c¢ { field" meth* }
field ::=1t f
meth:: =t m(form*) { e }
form :: =t var, where var # this
e::=new ¢() | var | null | e.m(e*) |
e.f|le.f =e|castre|e; e

c,d € ¥, the set of a class names
t,s,u € 7, the set of types
f € 7, the set of field names
m € ., the set of method names
var € {this}U ¥, where ¥ is the set of variable names

Figure 1: Syntax of MiniMAOQ,

2. THE BASE LANGUAGE: MiniMAOQ,

In this section we introduce MiniMAOy, an imperative object-
oriented calculus with classes, derived from Classic Java [8]. Fol-
lowing the lightweight philosophy of Featherweight Java [9], we
eliminate interfaces, super calls, and method overloading. We drop
let expressions and instead use eg ; e; to sequentially evaluate e
and then e;. We adopt Featherweight Java’s technique of treating
the current program and its declarations as global constants. This
avoids burdening the formal semantics with excess notation.

To allow later modeling of method call and execution join points,
we also separate call and execution in the semantics.

2.1 Syntax of MiniMAQ,

The syntax for MiniMAQy is given in Figure 1. A program con-
sists of a sequence of declarations followed by a single expression.
Running a program consists of evaluating this expression.

In MiniMAOQj the declarations are all of classes. We omit access
modifiers, which would only add gratuitous complexity; hence all
methods and fields are globally accessible. MiniMAQ also omits
constructors. All objects are created with their fields set to null.

The set of types is denoted by .7. MiniMAQy, includes just one
built-in type, Object, the top of the class hierarchy. Object con-
tains no fields or methods. For MiniMAQ, .7 = ¥, the set of valid
class names. % is left unspecified, but we use Java identifier con-
ventions in examples. We follow the same convention for the sets
F, M ,and ¥ used in Figure 1.

Most expressions in MiniMAQ(have a meaning like that in Java,

but there are some differences. The expression new C() creates an
instance of the class named C, setting all of its fields to the default
null value. For syntactic clarity, we follow Classic Java in using a
non-Java syntax, cast f e, to represent the Java cast (¢) e.

2.2 Operational Semantics of MiniMAQ,

We describe the dynamic semantics of MiniMAQ using a struc-
tured operational semantics [7, 15, 18]. The semantics is quite sim-
ilar to that for Classic Java. There are two main differences: a
stack (used for aspect binding in MiniMAQ) and the separation of
method call and execution into separate primitive operations.

For the operational semantics we add two expressions that do not
appear in the user-visible syntax.

ex=...lloc| (I (v...))
[::=fun m{var*).e:t
Tu=tX...Xt—t
vi=loc | null

loc € .2, the set of store locations

One can think of locations, loc € Z, as addresses of object records
in a global heap, but we just require that . is some countable set.
The application expression form is used to model method execu-
tion independently from method calls. In these expressions, / is a
(non-first-class) fun term that represents a method and (v...) is
an operand tuple that represents the actual arguments. The appli-
cation expression thus records information from method dispatch,
but before execution of the method body. The fun term carries type
information—a function type, 7. This type information is not used
in evaluation rules, but is helpful in the subject-reduction proof.
The use of the application expression form in the operational se-
mantics is described in more detail below.

As is typical in an operational semantics, we consider a sub-
set of the expressions, denoted by v, to be irreducible values. The
values in MiniMAQj are the locations and null. Evaluation of a
well-typed MiniMAQO, program will produce either a value or an
exception.

Evaluation contexts are denoted by E. The definition of evalua-
tion contexts below serves both to define implicit congruence rules
and to define a left-to-right evaluation order:

E:=—|E.f|E.f=¢e|v.f=E|cast tE|E;e]
E.m(e...) |[v.m(v...Ee...) | (I (v...Ee...))

The evaluation context for the application expression form only re-
curses on the arguments and not on the method body expression
in the fun term of the form. Evaluation of the method body does
not take place until the substitution of actuals for formals has been
done by the appropriate evaluation rule.

The relation, —, describes evaluation steps:

—:& X Stack x Store — (& U Excep) x Stack x Store

This relation takes an expression e € &, a stack, and a store and
maps this to a new expression or an exception, plus a new stack
and a new store. Exceptions are elements of

Excep = {NullPointerException,ClassCastException}.

For MiniMAQy, the evaluation relation on the stack is identity, so
we leave the set Stack undefined for now. The set Store contains
maps from locations to object records, where an object record has
the form [t.{f — v f € dom(fieldsOf (1)) }].

Although suppressed in the evaluation relation, the declarations
of the program are used to populate a global class table, CT, that
maps class names to their declarations.

52

Evaluation of a MiniMAQ, program begins with the triple con-
sisting of the main expression of the program, a stack, and an empty
store. The — relation is applied repeatedly until the resulting triple
is not in the domain of the relation. This terminating condition can
arise because the resulting triple contains either an irreducible value
or an exception. If the resulting triple contains an irreducible value,
then that value, interpreted in the resulting store, is the result of the
program. There is no guarantee that this evaluation terminates.

The — relation is defined by a set of mutually disjoint rules.
Except for the CALL and EXEC, these rules are standard and are
omitted here. The CALL rule is:

(Elloc.m(vy,...,vy)],J,S)

— <E[(l (10C7V17"'7vn))LJaS>
where S(loc) = [t.F] and methodBody(t,m) =1

CALL

This says that a method call expression, where the target is a loca-
tion bound in the store, is evaluated by looking up the body of the
method and constructing an application form with a function term,
[, recording the formal parameters and method body and an argu-
ment tuple recording the actual arguments. The interesting part in
the definition of the method lookup function is:

CT(c) =class ¢ extends d { field* meth; ...meth, }
Jie{l..p} -methi =t m(ty vary,...,tyvary) { e }
T=cXt] X... Xty —1

methodBody(c,m) = fun m(this,vary,...,vary).e: T

Another part recursively searches in superclasses when a method is
not found. This models inheritance of methods.

The application form produced by the CALL rule is evaluated by
the EXEC rule:

(E[(fun m{vary,...,vary).e:T (vg,...,vy))],J,S) EXEC

This rule replaces this and the formal parameters in the body with
the appropriate values. (The notation e{le’/ var|} denotes the stan-
dard capture-avoiding substitution of ¢’ for var in e.)

An example showing the CALL and EXEC rules is given in Sec-
tion 3.2.6. The companion technical report [4] contains the com-
plete operational semantics. It also contains a separate static se-
mantics and soundness theorem for MiniMAOQj.

3. MiniMAO,: ADDING ASPECTS

In this section we add advice binding to MiniMAOQOy, producing
the aspect-oriented core calculus MiniMAQO . Continuing with our
minimalist philosophy, the join point model of MiniMAOQ; is quite
simple. The model only includes call and execution join points,
the parameter binding forms this, target, and args, and the op-
erators for pointcut union, intersection, and negation. We inten-
sionally omit temporal join points, such as cflow; the techniques
for dealing semantically with such join points are well understood
[17], and such temporal join points do not substantially affect the
typing rules for aspects.

MiniMAO; accurately models Aspect]’s semantics for around
advice [12], in that it allows advice to change the target object of
a method call or execution before proceeding with the operation.
Moreover, as in Aspect], changing the target object at a call join
point affects method selection for the call, but changing the target
object at an execution join point merely changes the self object of
the already selected method. Changing the target object is useful
for such idioms as introducing proxy objects. Such proxy objects
can be used in aspect-oriented implementations of persistence or
for redirecting method calls to remote machines.

decl::=... | aspect a { field* adv* }

ped { e}
ped i = call(pat) | execution(pat) |

adv:: =t around(form™)

this(form) | target(form) | args(form™) |
ped && ped | 'ped | ped || ped
pat:: =t idPat(..)

e:=...| e.proceed(e*)

a € 4, the set of aspect names
idPat € .7, the set of identifier patterns

Figure 2: Syntax Extensions for MiniMAQO;

MiniMAO; does depart from Aspect)’s semantics for around ad-
vice in two ways: it does not allow changing the this (i.e., the
caller) object at a call join point and it uses a different form of
proceed, which syntactically looks like the advised method call
rather than the surrounding advice declaration as in Aspect]. These
differences are discussed more below.

One motivation for the design of MiniMAQ is to keep pointcut
matching, advice execution, and primitive operations in the base
language as separate as possible. This goal causes us to use more
evaluation rules that are strictly necessary. One way to think of
MiniMAO, is as an operational semantics for an aspect-oriented
virtual machine, where each primitive operation may generate a
join point that may trigger other rules for advice matching. Our
approach increases the syntactic complexity of the calculus, but we
find that it actually simplifies reasoning. The approach keeps sep-
arate concepts in separate rules that can be analyzed with separate
lemmas.

No previous work on formalizing the semantics of an aspect-
oriented language deals with the actual Aspect] semantics of ar-
gument binding for proceed expressions and an object-oriented
base language. Our calculus is motivated by the insight of Walker
et al. [16] that labeling primitive operations is a useful technique
for modeling aspect-oriented languages. However, to handle the
run-time changing of the target object and arguments when pro-
ceeding from advice, we replace their simple labels with more ex-
pressive join point abstractions. Also, rather than introduce these
join point abstractions through a static translation from an aspect-
oriented language to a core language, we generate them dynam-
ically in the operational semantics. The extra data needed for the
join point abstractions (versus the simple static labels) is more read-
ily obtained when they are generated dynamically. (This dynamic
generation is also adopted by Dantas and Walker [5].) Also, di-
rectly typing the aspect-oriented language, instead of just showing
a type-safe translation to the labeled core language, seems to more
clearly illustrate the issues in typing advice, though this is a mat-
ter of taste. Our type system is motivated by that of Jagadeesan
et al. [11]. We discuss this and other related work in more detail in
Section 4.

3.1 Syntax of MiniMAO,

Figure 2 gives the additional syntax for MiniMAQ. To the dec-
larations of MiniMAQO we add aspects. For a MiniMAQO; program
the set of types, .7, is € U <7, where <7 is the set of aspect names.
An aspect declaration includes a sequence of field declarations and
a sequence of advice declarations.

We only include around advice in MiniMAO;. Operationally,

53

around advice can be used to model both before and after ad-
vice. (As noted by Jagadeesan et al. [11], the typing rules necessary
for soundness may be less restrictive for before or after advice.)

An advice declaration in MiniMAO; consists of a return type,
followed by the keyword around and a sequence of formal para-
meters. The pointcut descriptor that follows specifies the set of
join points—the pointcut—where the advice should be executed.
A join point is any point in the control flow of a program where
advice may be triggered. The pointcut descriptor for a piece of ad-
vice also specifies how the formal parameters of the advice are to
be bound to the information available at a join point. The final part
of an advice declaration is an expression that is the advice body.

MiniMAO; includes a limited vocabulary for pointcut descrip-
tors. The call pointcut descriptor matches the invocation of a
method whose signature matches the given pattern. Similarly, the
execution pointcut descriptor matches the join point correspond-
ing to a method execution. In both of these, we restrict method
patterns to a concrete return type plus an identifier pattern that is
matched against the name of the called method. We choose not
to include matching against target or parameter types here because
that is just syntactic sugar for the target and args pointcut de-
scriptors.

We leave the set .# of identifier patterns underspecified. Gener-
ally, one can think of .# as a class of regular expression languages
such that all members of .# are elements of a language in .7.

The this, target, and args pointcut descriptors correspond to
the parameter-binding forms of these descriptors in AspectJ; they
bind the named formal parameters to the corresponding informa-
tion from the join point. To simplify the operational semantics, the
syntax requires a type and a formal parameter. For example, where
one could write this (n) in Aspect], one must write this (Number
n) in MiniMAO (where Number is the type of the formal parame-
ter n in the advice declaration). While this type could be inferred,
including it in the syntax clarifies the formalism. Another sim-
plification versus Aspect] is that the args pointcut descriptor in
MiniMAO; binds all arguments available at the join point; such
bindings do not allow matching of methods with differing num-
bers of arguments, unlike those in Aspect]. MiniMAO; does not
include any wildcard or subtype matching for this, target, or
args pointcut descriptors.

The final three pointcut descriptor forms represent pointcut nega-
tion (!pcd), union (pcd || pcd), and intersection (pcd && pcd).
Pointcut negation only reverses the boolean (match or mismatch)
value of the negated pointcut. Any parameters bound by the negated
pointcut are dropped. Pointcut union and intersection are “short cir-
cuiting”; for example, if ped, in the form ped; || ped, matches a
join point, then the bindings defined by pcd; are used and pcd, is
ignored.

MiniMAQO, also includes proceed expressions, which are only
valid within advice. An expression such as ey . proceed(ey,...,e,)
takes a target, eg, and sequence of arguments, ey, ..., e, and causes
execution to continue with the code at the advised join point—
either the original method or another piece of advice that applies
to the same method. As noted above, the proceed expression in
MiniMAO, differs from Aspect]. In MiniMAO), an expression of
the form e(. proceed(ey,...,e,) must be such that the type of the
target, e, and the number and types of the arguments, ey,...,e,,
match those of the advised methods. In Aspect], the arguments to
proceed must match the formal parameters of the surrounding ad-
vice. This design decision matches our intuition for how proceed
should work; it has little effect on expressiveness in a language
with type-safe around advice. Our design also precludes changing
the this object at call join points. Such changes would only be

Ju=j+J|e
Ju= qk7vopt7mopt~,lopt7roptD
k:=call | exec | this
Vopt 1=V | —
Mopr i =m | —
loprii=1]—
Topt =T | —

Figure 3: The Join Point Stack

e:=...| joinpt j(e*) | under e | chain B,j(e*)
B:=B+B|e

B::=[|b,loc,e,7,7]|

b= (a.B,B")

o =varw—loc | —

Bu=var| —

b € 2, the set of advice parameter bindings

Figure 4: Expression Forms Added for the Semantics

visible from other aspects, not the base program. Precluding these
changes eliminates some possibilities for aspect interference, a use-
ful property for our work on aspect-oriented reasoning. We are not
aware of any use cases demonstrating a need to allow changing the
this object.

3.2 Operational Semantics of MiniMAOQO,

This section gives the changes and additions to the operational
semantics for MiniMAO;. We describe the stack, new expression
forms introduced for the operational semantics, the new evaluation
rules, pointcut descriptor matching, and give evaluation examples.

3.2.1 The Join Point Stack

The stack in MiniMAOQ, as shown in Figure 3, is a list of join
point abstractions, which are five-tuples surrounded by half-moon
brackets, (...). A join point abstraction records all the information
in a join point that is needed for advice matching and advice para-
meter bindings, together referred to as advice binding. A join point
abstraction also includes all the information necessary to proceed
from advice to the original code that triggered the join point. A join
point abstraction consists of the following parts (most of which are
optional and are replaced with “—" when omitted):

— a join point kind, k, indicating the primitive operation of the
join point, or this to record the self object at method or ad-
vice execution (for binding the this pointcut descriptor);

— an optional value indicating the self object at the join point;

— an optional name indicating the method called or executed at
the join point;

— an optional fun term recording the body of the method to be
executed at an execution join point; and

— an optional function type indicating the type of the code un-
der the join point (or, equivalently, the type of a proceed
expression in any advice that binds to the join point).

The code under a join point is the program code that would ex-
ecute at that join point if no advice matched the join point. For
example, the code under a method execution join point is the body
of the method. The function type includes the type of the target
object as the first argument type.

3.2.2 New Expression Forms

The operational semantics relies on three extra expression forms,
shown in Figure 4. The first, joinpt, reifies join points of a pro-
gram evaluation into the expression syntax. A joinpt expression
consists of a join point abstraction followed by a sequence of actual
arguments to the code under the join point.

54

The second expression form that we add for the operational se-
mantics is under. An under expression serves as a marker that
the nested expression is executing under a join point; that is, a join
point abstraction was pushed onto the stack before the nested ex-
pression was added to the evaluation context. When the nested
expression has been evaluated to a value, then the corresponding
join point abstraction can be popped from the stack.

The final additional expression form is chain. A chain expres-
sion records a list, B, of all the advice that matches at a join point,
along with the join point abstraction and the original arguments to
the code under the join point.

The advice list of a chain expression consists of body tuples,
one per matching piece of advice. For visual clarity, “snake-like”
brackets, ||...]], surround each body tuple. A body tuple is com-
prised of two parts: operational information and type information.
The operational information includes: b, a parameter binding term
described below, loc, a location, and e, an expression. The loca-
tion is the self object; it is substituted for this when evaluating the
advice body. The expression is the advice body.

The binding term, b, describes how the values of actual argu-
ments should be substituted for formals in the advice body. This
substitution is somewhat complex to account for the special bind-
ing of the this pointcut descriptor, which takes its data from the
original join point, and the target and args pointcut descriptors,
which take their data from the invocation or proceed expression
immediately preceding the evaluation of the advice body.

Structurally, a binding term consists of a variable-location pair,
var — loc, which is used for any this pointcut descriptors, fol-
lowed by a non-empty sequence of variables, which represent the
formals to be bound to the target object and each argument in order.
The “—” symbol is used to represent a hole in a binding term. A
hole might occur, for example, if a pointcut descriptor did not use
this. The set of all possible binding terms is %.

The type information in a body tuple is contained in its last two
elements. The first of these represents the declared type of the
advice, an arrow from formal parameter types to the return type.
The second type element, the last element in the body tuple, is the
type of any proceed expression contained within the advice body.
While this type information simplifies the subject-reduction proof,
it is not used in the evaluation rules.

3.2.3 Evaluation Rules for MiniMAO,

Next we give an intuitive description of the new evaluation rules
in MiniMAO;. We add new evaluation context rules to handle the
joinpt, under, and chain expressions.

E:=... | joinpt j(v...Ee...) | under E |
chain B,j(v...Ee...)

The semantics replaces proceed expressions with chain expres-
sions, so we do not need additional rules for handling proceed.

We replace the CALL rule of MiniMAOq with a pair of rules,
CALLA and CALLp described below, that introduce join points and
handle proceeding from advice respectively. We replace the EXEC
rule similarly. This division exposes join points for call and execu-
tion to the evaluation rules. Just as virtual dispatch is a primitive
operation in a Java virtual machine, our semantics models advice
binding as a primitive operation on these exposed join points. This
advice binding is done by the new BIND rule. The new ADVISE
rule models advice execution, and an UNDER rule helps main-
tain the join point stack by recording when join point abstractions
should be popped.

The evaluation of a program in MiniMAO; does not begin with
an empty store as in MiniMAOQj. Instead, a single instance of each
declared aspect is added to the store. The locations of these in-
stances are recorded in the global advice table, AT, which is a set
of 5-tuples. Each 5-tuple represents one piece of advice. The 5-
tuple for the advice ¢ around(# vary,...,t, vary): pcd { e },
declared in aspect a, is (loc,pcd, e, (1] X ... X t, — t),T), where loc
is such that Sy (loc) = [a. F] is the aspect instance for a in the initial
store, Sp. The function type 7 is the type of proceed expressions
in e, derived from pcd.

The global class table, CT, is extended in MiniMAO; to also
map aspect names to the aspect declarations.

3.2.4 Splitting the Call Rule

In MiniMAQy, a method call is evaluated by applying the CALL
and EXEC rules in turn. In MiniMAO, each of these steps is bro-
ken into a series of steps. The CALL step becomes:

— CALLy: creates a call join point

— BIND: finds matching advice

— ADVISE: evaluates each piece of advice

— CALLg: looks up method, creates an application form

A similar division of labor is used for EXEC. We next describe each
of these steps in turn.

Create a Join Point. The CALL, rule is as follows:

(Elloc.m(vy,...,vy)],J,S) CALLp
— <E[J01npt qcall777m7771’-|)(lOC,V]7...,Vn)]7‘]7S>
where S(loc) = [t. F],

methodType(t,m) =t X ... X t, — ',
origType(t,m) =tg, and T=19 X ... X t, — '

This says that a method call expression with a non-null target eval-
uates to a joinpt expression where the join point abstraction car-
ries the information about the call necessary to bind advice and to
proceed with the original call. This information is: the call kind,
the method name, and a function type, 7, for the method that in-
cludes a target type in the first argument position. The function
type is determined using a pair of auxiliary functions, the interest-
ing bits of which are:

CT(c) =class c extends d { field" meth; ...meth, }
Jie{l..p} -methi =t m(ty vary,...,tyvar,) { e }
methodType(c,m) =1t X ... X tn —t

origType(t,m) =
max{s € J -t < s AmethodType(s,m) = methodType(t,m)}

The function, methodType, is essentially the same as methodBody,
defined earlier, but it yields a function type instead of a function

55

term. The function, origType, finds the type of the “most super”
class of the target type that also declares the method m. (The sub-
typing relation used in origType is just the reflexive transitive clo-
sure of the extends relation on classes, treating aspects as sub-
types of Object.) The target type included in the call join point
abstraction generated by CALL is this most super class. Using the
most super class allows advice to match a call to any method in a
family of overriding methods, by specifying the target type as this
most super class. We discuss this a bit more when describing the
target pointcut descriptor below. Finally, the arguments of the
generated joinpt expression are the target location—again in the
first position—and the arguments of the original call, in order.

Find Matching Advice. The BIND rule is the only place in
the calculus where advice binding (lookup) occurs. This rule takes
a joinpt expression and converts it to a chain expression that
carries a list of all matching advice for the join point. It also pushes
the expression’s join point abstraction onto the join point stack.

<E[j0inpt j(V(),...,Vn)},_J,S) BIND
< (E[under chain B,j(vy,...

where adviceBind(j+J,S) =B

)l j+,8)

The rule uses the auxiliary function adviceBind to find the (possibly
empty) list of advice matching the new join point stack and store.

adviceBind(J,S) = B, where B is a smallest list satisfying
Y(loc,pcd,e,t,7') € AT - ((matchPCD(J,pcd,S) = b # 1)
= [|b,loc,e,7,7']| € B)

The adviceBind function applies the matchPCD function, described
in Section 3.2.5, to find the matching advice in the global advice
table. (We leave adviceBind underspecified. In particular, we don’t
give an order for the advice in the list. For practical purposes some
well-defined ordering is needed, but any consistent ordering, such
as the declaration ordering used in our examples, will suffice.)

Having found the list of matching advice, the BIND rule then
constructs a new chain expression consisting of this list of advice,
the original join point abstraction, and the original arguments. The
result expression is wrapped in an under expression to record that
the join point abstraction must later be popped from the stack.

Evaluate Advice. The ADVISE rule takes a chain expression
with a non-empty list of advice and evaluates the first piece of ad-
vice.

(E[chain [|b,loc,e,.,]| +B,j(vg,...,vy)],J,S) ADVISE
— (E[under &'{loc/this[-{(vo,...,vn)/b}],} +J,S)
where ¢’ = (e)) 5 ; and j = (this,loc, —,—,)

The general procedure is to substitute for this in the advice
body with the location, loc, of the advice’s aspect and substitute
for the advice’s formal parameters according to the binding term,
b. We describe below how the binding term is used for the sub-
stitution. However, before the substitution occurs the rule uses the
{(—) ,; auxiliary function to eliminate proceed expressions in the
advice body.

The “advice chaining” auxiliary function, {(—)z ;, is defined for
proceed expressions as:

{eo.proceed(ey,... e,)>>B,j
= chain B,j((eo)z . (e1)p - (en)p ;)

For all other expression forms, the chaining operator is just ap-
plied recursively to every subexpression. Thus {(—))z ; rewrites all

e{(vo,....vn)/ (var — loc,Bo,...,Bp)}} =

e{lloc/ Varﬂﬂ"i/Variﬂie{o..n}.ﬁi:vari where n < p

€ﬂ<V(),...,Vn>/<_,ﬁ(),...7ﬁp>ﬂ’ =

e{]"i/Vari[}ie{onn}-ﬁ,:var, where n < p

In all other cases, binding substitution is undefined.

Figure 5: Binding Substitution

proceed expressions, replacing them with chain expressions car-
rying the remainder of the advice list B, along with the join point
abstraction, j, needed to proceed to the original operation once the
advice list has been exhausted. This rewriting is like that used by
Jagadeesan et al. [10], though they do not consider the target ob-
ject to be one of the arguments to proceed. Advice chaining is
illustrated with an example in Section 3.2.6.

After using the advice chaining function to rewrite the advice
body, the ADVISE rule uses variable substitution to bind the formal
parameters of the advice to the actual arguments. It substitutes the
aspect location, loc, for this and substitutes the actuals for the for-
mals according to b. We overload the usual substitution notation to
define substitution for binding terms. Figure 5 gives this definition.
The definition says that the variable in the var — loc pair is replaced
with the location, unless there is a hole,”“—", in this position of the
binding term. (Here var is a formal parameter of the advice and loc
is the location of the calling object at the join point.) Each element,
Bi, in the binding term that is not a hole must be a variable. Each
such variable is replaced with the corresponding argument, v;. For
example:

(x.f = y){(locO,locl)/(x — loc2, —, y)}
= (loc2.f = locl)

The x +— loc2 in the binding term does not use data from the
arguments (loc0,loc1); the value 1ocO is not used because of the
hole in the binding term; and y is replaced with loc1. The type
system rules out repeated use of a variable in a binding term.

After substitution, the ADVISE rule pushes a this join point ab-
straction onto the stack—equivalent to the self reference stored on
the call stack in a Java virtual machine—and wraps the result ex-
pression in an under expression, which records that the join point
abstraction should be popped from the stack later.

Finish the Original Operation. Once the list of advice has
been exhausted, the result is a chain expression with an empty
advice list, the original join point abstraction, and a sequence of ar-
guments. If the BIND rule had found no advice, then the arguments
will be the target and arguments from the original call. Otherwise,
the arguments will be whatever was provided by the last piece of
advice. This chain expression is used by the CALLp rule to eval-
uate the original call.

(E[chain e, (call,—,m,—,t)(loc,vy,...,vy)],J,S)

— <E[(l (loc,vl,...,vn))LJ,S)
where S(loc) = [t. F] and methodBody(t,m) =1

CALLp

The CALLgp rule looks up the type of the (possibly changed) target
object in the store and finds the method body in the global class
table. The rule takes the method name from the join point abstrac-
tion. The result of the rule is an application expression, just like the
result of the CALL rule in MiniMAOQ,.

56

Because both the CALL 4 and CALLp rules use a target location
for method lookup, there are corresponding rules for null targets.
These rules just map to a triple with a NullPointerException
and are omitted here.

A General Technique. The technique used to convert the
CALL rule from the MiniMAQ calculus into a pair of rules, with
intervening advice binding and execution, is general. The first rule
in the new pair replaces the original expression with a joinpt ex-
pression, ready for advice binding. The second rule in the pair takes
a chain expression, exhausted of advice, and maps it to a new
expression like the result expression of the rule from MiniMAOQOj.
This is how the two new EXEC rules are generated:

(E[CL (vgyenryvn))], T,S) EXECp
— (E[joinpt (exec,vy,m,l,T)(vy,...,vn)],J,S)
where [= fun m(vary,...,vary).e: 7T

(E[chain e, (exec,v,m,l,T)(vg,...,v,)],J,S) EXECp
— (E[under e{lvo/varg,...,vn/varylt],j+J,S)
where [= fun m(vary,...,var,).e: T and

Jj=(this,vy,—,—,—)

The EXEC 4 rule replaces the application expression with a joinpt
expression. The join point abstraction of this expression includes
the exec kind, the method name, the fun term of the application,
and the type of the fun term. The abstraction also includes, in the
position reserved for this objects, the value of the target object
from the argument tuple, because target and this objects are the
same at an execution join point. The arguments to the joinpt
expression are the arguments to the original application expression.

The EXECp rule takes a chain expression that has been ex-
hausted of its advice. It applies the fun term from the chain’s join
point abstraction to the argument sequence, substituting the argu-
ments for the variables in the body of the fun term. Like ADVISE,
the EXECp rule pushes a this join point abstraction onto the stack
and wraps its result expression in an under expression.

It would be straightforward to add pointcut descriptors and join
points for any of the primitive operations in the original calculus,
such as field assignment. We would have to generalize the data
carried in the join point abstractions to accommodate additional
information, but the BIND and ADVISE rules would remain un-
changed. Because the call and exec join points are sufficient for
our study, we choose not to include join points for the other prim-
itive operations. To do so would just introduce additional notation
and bookkeeping.

The Under Rule.
evaluation rules.

The UNDER rule is the simplest of the new

(E[under v],J,S) — (E[],J',S)
where J = j+.J', for some j

UNDER

It just extracts the value from the under expression and pops one
join point abstraction from the stack.

3.2.5 Pointcut Matching

Following Wand et al. [17], we define the matchPCD function
for matching pointcut descriptors to join points using a boolean
algebra over binding terms. Our binding terms, as described in
Section 3.2.2 above, are somewhat more complex than theirs, since
we model this, target, and args pointcut descriptors and faith-
fully model the semantics of proceed from Aspect] with regard to
changing target objects in advice. Nevertheless, the basic technique
is the same.

The boolean algebra is:

%L:ﬂU{L} beA re#, bVr=»>b
LVr=r IAr=_1 bAL=1 bAY =bLib
L= (=) b=1

The terms of the algebra are drawn from the set 8, = ZU{L},
where binding terms can be thought of as “true” and L as “false”.
The operators in the algebra are conjunction (A), disjunction (V),
and complement (—). The double complement of an element is
not necessarily the original element, unless we consider all binding
terms to be isomorphic; the effect of this detail on advice binding
is discussed below. The binary operators are short circuiting; for
example, bV r = b, ignoring the value of r. One difference in our
algebra, versus Wand et al. [17], is in the conjunction of two non-_L
terms. Our calculus must consider the bindings from both terms,
because we have more than one pointcut descriptor that can bind
formals. Sometimes these bindings must be combined, for example
when both a target and args pointcut descriptor are used. The
bindings are combined using a pointwise join:

(a,BO,...,ﬁn>u(a’,ﬁé,...,ﬁ,’,)
=(aud,BoUpy, ..., By LB,
where g = max(n, p),

Vie{(n+1).4q} (Bi=—), and
vie{(p+1)-q}-(Bi=-)

The pointwise join operator extends the shorter binding term if the
two terms do not have the same number of elements. The join
operator, LI, on pairs of & or 8 terms resolves to the term that is not
a hole. Collisions in the join operator, where neither binding has a
hole at a given position, are resolved in favor of the left-hand term;
however, the typing rules for pointcut descriptors ensure that such
collisions do not occur in well-typed programs.

The rules defining matchPCD are straightforward. If the pointcut
descriptor matches the join point stack, then the rules construct the
appropriate binding term; otherwise they evaluate to L. The only
complications are to accommodate the multiple parameter binding
forms. For example, this and target matching must be done
without information on how many additional arguments might be
bound by an args pointcut descriptor. Thus, the length of binding
terms must be allowed to vary.

Call and Execution. The call rule only matches if the most
recent join point is of the corresponding kind and the return type
and name of the method under the join point are matched by the
pattern:

matchPCD((k, o,m, o, tg X ... X t, — 1) +J,
call(uidPat(..)),S)

:{<7>
1

Because this pointcut descriptor does not bind formal parameters, a
match is indicated by an empty binding term. The execution rule
is similar.

if k= call, t = u, m € idPat
otherwise

This. Two rules are used to handle this pointcut descriptors:

matchPCD((<,v, <, -,) +J,this (¢ var),S)

_ J{var—v,—) ifv#null, S(v) =[s.F], s ¢
L otherwise

57

matchPCD((|o, —, vy oy o) +J,this (t var), S)
= matchPCD(J, this(t var),S)

Together, these rules find the most recent join point where the op-
tional self object location is provided in the join point abstraction.
Once found, if the object record in that location is a subtype of
the formal parameter type, then the formal named by the pointcut
descriptor is mapped to the location; otherwise the resultis L.

Target. The target pointcut descriptor is handled similarly to
this, but uses the target type from the join point instead:

matchPCD((|=, <y ey oy S0 X ... X Sy — S) +J,
target (7 var),S)

_ {(,var)
1

A rule for searching through the join point stack is elided. Unlike
the this pointcut descriptor, the location to be bound to the for-
mals is not available from the join point abstraction. The location
may come from a proceed expression to be evaluated later. Also
unlike this, target requires an exact type match. This is nec-
essary for type soundness, as noted by Jagadeesan et al. [11]. If
the descriptor were to match when the target type was a supertype
of the parameter type, then the advice could call a method on the
object bound to the formal that did not exist in the object’s class.
On the other hand, if the descriptor were to match when the target
type was a subtype of the parameter type, then the advice could
replace the target object with a supertype before proceeding to a
method call. If this supertype did not declare the method, then a
runtime type error would result.! Thus, for soundness the target
pointcut descriptor must use exact type matching. If advice were
not allowed to change the target object, then less restrictive target
type matching could be used.

This restriction to exact type matching is not as severe as it may
seem at first. This is because when the CALL rule generates the
target type for its join point abstraction, it uses the type of the class
declaring the top-most method in the method overriding hierarchy.
Thus, the actual target object for a matched call may be a subtype
of the target type that was matched exactly. Using the declaring
class of this top-most method also means that advice can be written
to match a call to any method in a family of overriding methods.
Unlike the CALLA rule, the EXEC rule creates a join point ab-
straction using the actual target type. Again, this is necessary for
soundness. At an exec join point method selection has already oc-
curred and advice cannot be allowed to change the target object to
a superclass even if that superclass declared an overridden method.

We are also interested in investigating whether a more elaborate
type system might permit more expressive pointcut matching while
maintaining soundness. However, this is orthogonal to our con-
cerns with modular reasoning and so we leave it for future work.

if so =t
otherwise

Args. The rule for the args pointcut descriptor is similar to the
one for target above. It matches if the argument types of the most
recent join point match those of the pointcut descriptor. The result-
ing binding includes all formals named in the pointcut descriptor in
the corresponding positions. As with the target pointcut descrip-
tor, only the relative position to be bound, not the actual value, is
available until the advice is executed.

The rules for pointcut descriptor operators (which we elide) sim-

Indeed, in Aspect] 1.2, which includes subtype matching for its
target pointcut descriptor, one can generate a run-time type error
in just this way.

class Cl extends Object {
Object m(Cl a) { this; a }
}

new C1() .m(new C1);

Figure 6: A Sample Program Without Aspects

ply appeal to the corresponding operators in the binding algebra:
union to disjunction, intersection to conjunction, and negation to
complement. The definition of complement implies that ——pcd #
pcd. Both would match the same pointcut, but the former would not
bind any formals while the later might. (This is slightly different
than Aspect], which simply disallows binding pointcut descriptors
under negation operators.)

A final rule says that any cases not covered by the other rules
evaluates to L. This just serves to make matchPCD a total function,
handling cases that do not occur in the evaluation of a well-typed
program (such as matching against an empty join point stack).

3.2.6 Example Evaluations in MiniMAO,

This section gives examples of several evaluations.

Calls in MiniMAQ, vs. MiniMAO;. Suppose we have the
program declared in Figure 6. This program does not include any
aspects and the result of evaluating it is the same in MiniMAQ, and

MiniMAO|, though the difference in the steps taken is illustrative.
In both cases there is an evaluation step with left hand side:

(LO.m(L1),e,S)

where the store S maps both LO and L1 to C1 objects. In MiniMAO
this evolves by the CALL and EXEC rules:

— ((fun m(this, a).(this;a):7 (LO,L1)),e,S)
(CALL)

— (LO; L1,e,S) (EXEC)

where we leave T as an exercise for the reader. On the other hand,
the evaluation in MiniMAOQ; is:

(L0.m(L1),e,S)
— (joinpt (call,—,m,—,7/) (LO, L1),e.8) (CALLA)
< (under chain e,(call,—,m,—,7/) (LO, L1),J,S)

(BIND)
— (under
(fun m(this, a).(this;a):t (LO,L1)),J,S)
(CALLB)
— (under (EXECA)
joinpt (exec,LO,m,l/,t) (LO, L1),J,S)
< (under under (BIND)
chain e, (exec,LO,m,/,7) (LO, L1),J,S)
— (under under (LO; L1),J',S) (EXECR)

where [is fun m(this, a).(this;a):7,and 7/,J, and J are left
to the reader. Each step in the original evaluation is split into two
parts, with intervening advice lookup.

Advice Binding. Suppose we add the aspect declaration of
Figure 7 to the program in Figure 6. The presence of this advice
changes the result of the first BIND step above (i.e., the one for

58

aspect A {
Object around(Cl t, Cl s)
call(Object m(..))
&& target(Cl t) && args(Cl s)
{ this }

Figure 7: Aspect Added to Program of Figure 6

the call pointcut descriptor). BIND’s call to adviceBind uses the
following application of matchPCD:2

matchPCD((call,—,m,—, t/|),pcd,S)
where 7’ =C1xCl—0bject, and
pcd is from Figure 7

= matchPCD((call,—,m,—,t/),call(0Object m(..)),S)
AmatchPCD((call,—,m,—, 7/, target (C1 t),S)
AmatchPCD((call,—,m,—,1/),args(Cl s),S)

(<—,—>u<—,t>){j<—,—,s>

<77t>H<7,7,S>

<—,t,s>

Using this matching derivation, the result of the BIND step is:

(under chain [|(—,t,s), L2, this, ©/, 7/]],
(call,—,m,—,t/) (LO, L1),J,S)

where L2 is the location of A’s aspect instance in the initial store.
This triple evolves by the ADVISE rule. Because the body of the
advice does not proceed to the advised code, the result of this step
is the final result of the program, after using UNDER to pop the join
point stack:

— (under under L2,J”,S) (ADVISE)
— (under L2,J,S) (UNDER)
— (L2,e,S5) (UNDER)

Advice Chaining. A final example considers advice that pro-
ceeds to the advised code and changes the target object. Consider
the program in Figure 8. Unlike our previous examples, the advice
proceeds and there is a subclass, SC1, which is used for the argu-
ment to the method call. Evaluation of this program reaches a stage
where the result of the BIND rule is:

(under chain
{(—,t,s), L2, s.proceed(t), 7/, /]|,
(call,—,m,—,7/) (LO, L1),J,S)

where, as before, L2 is the location of A’s instance and LO is the lo-
cation of a C1 instance, but now L1 is the location of a SC1 instance.
This triple evolves by the ADVISE rule, which calculates

((s.proceed(t))), ; =chain e, (s, t)

where j = (call,—,m,—, /). The rule then substitutes into this
expression according to the binding term (—,t,s) to form its re-
sult, with the order of the two locations swapped as compared to
the original, advice-free example above:

2Technically the store must be different than before, due to the as-
pect instance in the initial store. However, because S is underspec-
ified, we use the same meta-variable here to facilitate comparisons.

aspect A {
Object around(Cl t, Cl s)
call(Object m(..))
&& target(Cl t) && args(Cl s)

s.proceed(t) // swaps target, argument

}
class Cl extends Object {

Object m(Cl a) { this; a }
}
class SCl1 extends Cl {

Object m(Cl a) { new Object() }
}

new C1().m(new SC1);

Figure 8: A Sample Program Demonstrating Proceed

— (under under chain e,j (L1, L0),J”.S)
< (under

(ADVISE)

(fun m(C1l this, Cl a).(nmew Object()):7 (L1,L0)),

J”, S>
(CALLB)

The method body found by the CALLg rule is declared in SC1,
instead of in C1.

We invite the reader to consider the same example, but replace
the advice’s call pointcut descriptor with a similar execution
one. This will demonstrate that changing the target object when
proceeding at an exec join point does not affect method selection.

3.3 Static Semantics of MiniMAOQ,

We next sketch some of the static semantics of MiniMAO;. We
focus on the typing of pointcuts and advice, since they are the most
interesting deviations from past work.

The rules for typing pointcut descriptors make use of a simple
algebra over .7 U{_L}, whose only operator, L, is used to combine
type information when pointcuts are intersected:

tUl =t U=t lul=_1

The operation is undefined for 7 LI s, because in the type judgment
for pointcuts such a combination would indicate a collision and is
disallowed. This operation is also lifted to type sequences.

The type of a pointcut descriptor, pcd, has six parts, i.2' .U " .
Vi .V,, where:

— 4 is the this type matched by pcd;

— 1 is the target type;

— U is the tuple of argument types;

— 1" is the return type;

— V) is the set of variables that would definitely be bound by
pcd at a matched join point; and

— V, is the set of variables that might be bound there.

Each of the type parts may also be L to indicate that the information
cannot be determined from the pointcut descriptor. The two sets of

59

variables, V| and V,, represent “must-bind” and “may-bind” sets re-
spectively, which are useful in reasoning about variable bindings in
pointcut unions and intersections. Well-typed advice requires that
the must-bind and may-bind sets are identical (see the first hypoth-
esis of T-ADV below).

The pointcut descriptor typing rules are mostly straightforward.
We discuss a couple of them here. The T-TARGPCD rule gives the
type for a target pointcut descriptor:

T-TARGPCD
I(var) =t

I'+target(tvar):L.t. L. L. {var}.{var}

The hypothesis of the above rule looks up the type of var in the type
environment I. (I is a partial map from ¥ U {this,proceed} to
.) The conclusion of the rule records the target type, 7, of the
pointcut descriptor and records that the must- and may-bind sets are
both {var}. The rules for the other base cases (call, execution,
this, and args) are similar.

The most interesting of the typing rules for recursive pointcut
descriptors is the one for intersection:

T-INTPCD
Fl—pcdl:121.12’1.U1.12’1’.V1.V{
FFpCdzlqu.uAlz.Uz.ﬁ/z/.Vz.VZ/
i=a U @ =dus, U=UUU, #'=alud)
Vinvy=0 V=vu¥% V =Vuy

'k ped; && pedy it UiV .V

This rule allows for the combination of the various binding forms
in pointcut descriptors like target(T t) && args(S s). The
first two hypotheses obtain the types of pcd; and pcd,. The next
four hypotheses combine these types using the LI operator described
above. These hypotheses select the non-_L entries from the types
and prevent duplicate bindings. For example, if both pcd| and pcd,
have a non-_L target type, &} L} is undefined and pcd && pcd, has
no type. Finally the last three hypotheses deal with the must- and
may-bind sets. V{ NV, = 0 requires no overlap in the sets variables
that may be bound by the two pointcut descriptors. The last two
hypotheses calculate the combined must- and may-bind sets.
Advice is well typed if its pointcut descriptor matches a join
point where the code under the join point has target type ug, ar-

gument types uy,...,u, and return type u.
T-ADpv
vary:ty,...,vary ty Eped:aoug(uy, .. up) e VaV
vV ={vary,...,vary}
vary :ty,...,vary :ty,this:a,proceed: (up X ... xup — u) Fe:s
st u
Ft around(t vary,...,t, vary) ped { e } OKina

The “_” in the first hypothesis indicates that the type bound by a
this pointcut descriptor does not affect the advice type. The point-
cut descriptor must also specify bindings for all of the formal para-
meters of the advice; the use of {vary,...,var,} for both the must-
and may-bind sets ensures this. Finally, the body of the advice is
typed in an environment that gives each formal its declared type;
gives this the aspect type, a; and gives proceed the type derived
from pcd. In this environment, the advice body must have a type
that is a subtype of the declared return type of the advice. In turn,
this declared return type must be a subtype of the return type of
the original code under the join point. This allows the result of the
advice to be substituted for the result of the original code.

Rule T-ADV permits advice to declare a return type that is a
subtype of that of the advised method. This means that advice like:

A around(C t)
call(B m(..)) && target(C t) && args()
{ t.proceed() }

is not well typed if A is a proper subtype of B: the proceed expres-
sion has type B, which is not a subtype of the declared return type
of the advice. Wand et al. [17, §5.3] argue that this advice should
be typable, but we disagree. This case is really no different than a
super call in a language with covariant return-type specialization.
In such a language, an overriding method that specializes the re-
turn type cannot merely return the result of a super call as its result.
The overriding method must ensure that the result is appropriately
specialized.

3.4 Meta-theory of MiniMAQO,

The key property of MiniMAOQ is that it is type sound: a well-
typed program either converges to a value or exception, or else
it diverges. We prove this using the usual subject reduction and
progress theorems. For MiniMAQ, the proofs closely follow those
of Flatt et al. [8]. The soundness proof for MiniMAO; relies on a
pair of key lemmas that we sketch here. The companion technical
report [4] gives the full details.

The first key lemma is used in the BIND case of the subject re-
duction proof. The lemma relates advice binding to advice typing.
It is used to argue that the list of advice that matches at a joinpt
expression can be used by the BIND rule to generate a well typed
chain expression. We prove the lemma using a structural induction
on the type derivation for the pointcut of the matching advice.

The second key lemma states that advice chaining, replacing
proceed expressions with chain expressions, does not affect typ-
ing judgments given the appropriate assumptions. This lemma is
used for the ADVISE case in the subject reduction proof.

The subject reduction and progress theorems are standard and
are elided. Finally, we have the soundness theorem.

THEOREM 1 (SOUNDNESS). Given a program

P =decly...decl, e, with F P OK,

and a valid store Sy, then either the evaluation of e diverges or else
(e,0,80) 5 (v,J,S) and one of the following hold for v:

— v=loc and loc € dom(S),
— v =null, or

— v € {NullPointerException,ClassCastException}

4. RELATED WORK

No previous work deals with the actual Aspect] semantics of ar-
gument binding for proceed expressions and an object-oriented
base language. Wand et al. [17] present a denotational semantics
for an aspect-oriented language that includes temporal pointcut de-
scriptors. Our use of an algebra of binding terms for advice match-
ing is derived from their work. Their semantics binds all advice
parameters at the join point instead of at each subsequent proceed
expression. Their calculus is not object-oriented and so does not
deal with the effects on method selection of changing the target ob-
ject. Douence et al. [6] present a system for reasoning about tem-
poral pointcut matching. They do not formalize advice parameter
binding and do not include proceed in their language.

Jagadeesan et al. [10] present a calculus for a multithreaded,
class-based aspect-oriented language. They omit methods, using
advice for all code abstraction. The lack of separate methods sim-
plifies their semantics, but makes their calculus a poor fit for our

60

planned studies of a verification logic for Aspect]J-like languages.
Also, their calculus does not include the ability of advice to change
the target object of an invocation. In an unpublished paper [11]
they add a sound type system to their calculus. Our type system
is motivated by that work, but extends it to handle the separate
this, target, and args binding forms and the ability of advice
to change the target object.

Masuhara and Kiczales [14] give a Scheme-based model for an
AspectJ-like language. They do not include around advice in their
model. They do sketch how this could be added, but do not address
the effect on method selection of changing the target object.

Aldrich [2] presents a system called “open modules” that in-
cludes advice and dynamic join points with a module system that
can restrict the set of control flow points to which advice may be
attached. The system is not object-oriented, so it does not address
the issue of changing the target of a method call, and it does not
include state. Dantas and Walker [5] present a simple object-based
calculus for “harmless advice”. They use a type system with “pro-
tection levels” to keep aspects from altering the data of the base
program. However, in keeping with this non-interference property,
they do not allow advice to change values when proceeding to the
base program.

Bruns et al. [3] describe HABC, a name-based calculus in which
aspects are the primitive computational entity. Their calculus does
not include state directly, but can model it via the dynamic cre-
ation of advice. However, it is not obvious how such a model of
state could be used for our planned study of aspect-oriented rea-
soning when aspects may interfere with the base program via the
heap. Also, while their calculus does allow modeling of a form
of proceed, It is difficult to see how it could be used to study the
effects of advice on method selection. Finally, their calculus is un-
typed and is not class-based.

Walker et al. [16] use an innovative technique of translating an
aspect-oriented language into a labeled core language, where the
labels serve as both advice binding sites and targets for goto ex-
pressions, where they are used to translate around advice that does
not proceed. While their work does consider around advice and
proceed in an object-oriented setting—the object calculus of Abadi
and Cardelli [1]—it does not consider changing any arguments to
the advised code, let alone the effects on method selection of chang-
ing the target object of an invocation.

S. CONCLUSION

In many respects MiniMAOQ, faithfully explains the semantics of
Aspect]’s around advice on method call and execution join points.
In particular, MiniMAO; faithfully models the binding of argu-
ments and the ability of proceed to change the target object in
a call join point. The semantics supports this ability by breaking
the processing of method calls into several steps: (i) creating the
join point for the call, (ii) finding matching advice, (iii) evaluating
each piece of advice, and (iv) finally creating an application form.
Since the target object is only used to determine the method called
in step (iv) (the CALLp rule), the advice can change the target by
using a different target in the proceed expression. Such a change
affects the application form created, which affects the join point
created for the method’s execution.

In addition to the necessary simplifications, MiniMAQ, also has
a few interesting differences from Aspect]. In particular the typing
of proceed and the various pointcut descriptions has a different
philosophy from Aspect]. Its typing in MiniMAO; corresponds to
the type of the method being advised, instead of being related to
the type of the advice’s formal parameters. This contributes to a
simpler and more understandable semantics for proceed.

Future work involves using MiniMAO; to study the reasoning
problems indicated in the introduction.

6. ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their helpful
comments.

References

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Mono-
graphs in Computer Science. Springer-Verlag, 1996.

[2] Jonathan Aldrich. Open modules: A proposal for mod-
ular reasoning in aspect-oriented programming. In Curtis
Clifton, Ralf Lammel, and Gary T. Leavens, editors, FOAL
2004 Proceedings: Foundations of Aspect-Oriented Lan-
guages Workshop at AOSD 2004, pages 7-18, Lancaster, UK,
2004. URL http://www.cs.iastate.edu/~leavens/
FOAL/papers-2004/proceedings.pdf.

[3] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James

Riely. pabc: A minimal aspect calculus. In Proceedings of

the 2004 International Conference on Concurrency Theory,
pages 209-224. Springer-Verlag, 2004.

[4] Curtis Clifton and Gary T. Leavens. MiniMAOQO: Investigat-
ing the semantics of proceed. Technical Report TR05-01,
Towa State University, 2005. Available from ftp://ftp.cs.
iastate.edu/pub/techreports/TR05-01/TR.ps.gz.

[5] Daniel S. Dantas and David Walker. Harmless advice. In
The 12th International Workshop on Foundations of Object-
Oriented Languages (FOOL 12), Long Beach, California,
2005. ACM.

[6] R. Douence, O. Motelet, and M. Siidholt. A formal defini-
tion of crosscuts. In Reflection 2001, number 2192 in LNCS.
Spring-Verlag, November 2001.

[7] Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state. Theoretical
Computer Science, 103:235-271, 1992.

[8] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. A programmer’s reduction semantics for classes
and mixins. In Formal Syntax and Semantics of Java, chap-
ter 7, pages 241-269. Springer-Verlag, 1999. URL http:
//citeseer.ist.psu.edu/flatt99programmers.html.

[9] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A minimal core calculus for Java and GIJ.
In Loren Meissner, editor, Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA‘99), volume
34(10), pages 132-146, N. Y., 1999.

[10] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus
of untyped aspect-oriented programs. In Luca Cardelli, editor,
ECOOP 2003, European Conference on Object-Oriented Pro-
gramming, Darmstadt, Germany, volume 2743, pages 54-73.
Springer-Verlag, 2003.

[11] Radha Jagadeesan, Alan Jeffrey, and James Riely. A typed
calculus for aspect oriented programs. Available from ftp://
fpl.cs.depaul.edu/pub/rjagadeesan/typedABL.pdf,
Feb 2004.

61

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
Aspect]. In J. Lindskov Knudsen, editor, ECOOP 2001
— Object-Oriented Programming 15th European Conference,
Budapest Hungary, volume 2072, pages 327-353. Springer-
Verlag, Berlin, 2001.

[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, ECOOP '97 — Object-Oriented Program-
ming 11th European Conference, Jyvdiskyld, Finland, volume
1241, pages 220-242. Springer-Verlag, 1997.

[14] Hidehiko Masuhara and Gregar Kiczales. Modeling cross-
cutting in aspect-oriented mechanisms. In ECOOP 2003 -
Object-Oriented Programming European Conference, pages
2-28. Springer-Verlag, 2003.

[15] Gordon Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus University,
1981.

[16] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of
aspects. In Proceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programming, pages 127—
139, Uppsala, Sweden, 2003. ACM Press.

[17] Mitchell Wand, Gregor Kiczales, and Chris Dutchyn. A se-
mantics for advice and dynamic join points in aspect-oriented
programming. Trans. on Prog. Lang. and Sys.,26(5):890-910,
2004.

[18] Andrew K. Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness. Information and Computation, 115
(1):38-94, 1994.

62

Expressiveness and Complexity of Crosscut Languages

Karl J. Lieberherr
Northeastern University,
Boston, MA

lieber@ccs.neu.edu

ABSTRACT

Selector languages, or crosscut languages, play an important
role in aspect-oriented programming (AOP). Examples of
prominent selector languages include the pointcut language
in AspectJ, traversal specifications in Demeter, XPath, and
regular expressions. A selector language expression, also re-
ferred to as a selector, selects nodes on an instance graph
(an execution tree or an object tree) that satisfies a meta
graph (a call graph or a class graph). The implementation
of selector languages requires practically efficient algorithms
for problems such as: Does a selector always (or never) se-
lect certain nodes Select-Always (Select-Never), does a
selector ever select a node Select-Sat, does one selector im-
ply another selector Select-Impl or may an edge in an in-
stance graph lead to a node selected by the selector Select-
Completion.

We study these problems from the viewpoints of two impor-
tant selector languages called SAJ, inspired by AspectJ, and
SD, inspired by Demeter, and several of their sublanguages.
We show a polynomial-time two-way reduction between SD
and SAJ revealing interesting connections promoting trans-
fer of algorithmic techniques from Aspect]J to Demeter and
vice-versa. We provide several practically useful polynomial-
time algorithms for some of the problems, and we show oth-
ers to be NP- or co-NP-complete. We present a fixed param-
eter tractable (FPT) algorithm for one of the NP-complete
problems. This early result indicates a line of attack for
dealing with the intractability inherent in these problems.

The paper provides a list of algorithmic results that are of
interest to developers of scalable AOP tools. We discuss the
consequences of this paper for our DAJ implementation.

General Terms
AspectJ, Demeter, pointcut designators, traversal strategies

1. INTRODUCTION

Aspect-oriented programs consist of two building blocks:
WhereToInfluence and WhatToDo. The WhereTolnfluence
part defines the points in an executing program where we
want to influence the program. The WhatToDo part defines
how to influence the program. In this paper we analyze
declarative, non Turing-complete selector (or crosscut) lan-
guages to formulate the WhereToInfluence part.

In a pioneering paper, Masuhara and Kiczales [16] compare
crosscutting in four aspect-oriented mechanisms, including

Jeffrey Palm
Northeastern University,
Boston, MA

jpalm@ccs.neu.edu

63

Ravi Sundaram
Northeastern University,
Boston, MA

koods@ccs.neu.edu

AspectJ and Demeter. We extend their work to include both
algorithmic upper bounds as well as hardness results on sev-
eral computational problems underlying AspectJ and Deme-
ter. For example, motivated by another influential paper by
Masuhara and Kiczales [17], we show that general elimina-
tion of run-time tests in AspectJ programs, even without
negation in the pointcuts, is NP-complete in the general
case.

Our analysis is at a high level of abstraction, yet detailed
enough to provide useful practical input for the implementa-
tion of selector languages. The analysis is useful to current
tools, e.g., AspectJ and Demeter (DemeterJ, DJ, DAJ[2]),
and for many more aspect-oriented languages to come. Our
model is a three level model [11] where at the top level we
have selectors (e.g., pointcut designators or traversal strate-
gies), at the second level meta graphs (e.g., static call graphs
or class graphs) and at the third level instance trees (e.g.,
dynamic call trees or object trees) conforming to the meta
graphs. The purpose of the selectors is to choose a set of
nodes in the instance trees, or equivalently to choose a set
of paths from the root of the trees to those nodes. For an
example, the meta graph for the AspectJ program in Figure
2 is sketched in Figure 1.

We study several algorithmic problems for two kinds of se-
lector languages and their sublanguages. The first language,
called SAJ, is an abstraction of the AspectJ pointcut lan-
guage. We lump all primitive pointcuts together into a term
n(l), selecting all the nodes with label . We use flow(S),
selecting all nodes reachable from the root through a node
in S. And we add the set-theoretic operators |, & and !.

The second language, SD, is an abstraction and generaliza-
tion of the Demeter traversal strategies. We use the version
described in Palsberg et al. [21] but extended with the set-
theoretic operators & and !. SD is more flow oriented, and
we reuse the semantics from [21] in terms of path sets.

We consider two kinds of applications of selector languages.

AspectJ-style applications: The selector language is used to
select nodes in the execution trees and their corresponding
shadows in the program. The virtual machine decides, based
on the input data, which execution tree to construct and the
tree is traversed in full but only a subset of the nodes satisfies
the selector expression. The term pointcut language is used
instead of selector language.

Demeter-style applications: The selector language is used
to select nodes in the object trees and their corresponding
shadows in the meta graph. The object tree is given as
input, and the tree is partially traversed reaching all the
nodes satisfying the selector expression. The term traversal
language is used instead of selector language.

One point of this paper is to also consider SAJ for Demeter-
style applications and SD for AspectJ-style applications.
The paper points out the close relationship between those
two languages. We consider the following algorithmic prob-
lems for SAJ and SD and their sublanguages. For all of those
problems we consider the version where the meta graph is
given and for Select-Sat-Static we consider the case where
only the selector is given as input and we ask for the exis-
tence of a suitable meta graph. Select-Always: Does a se-
lector always select nodes with label A in all instances? This
problem is useful for AspectJ-style applications of selector
languages: it frees us from having to do any checking at run-
time. See papers by Masuhara/Kiczales [17], Oege deMoor
[23], and Wu/Lieberherr [27]. Select-Always is also useful
for Demeter-style applications of selector languages: We are
not required to do any run-time checking to ensure that the
traversal is at the right place.

Select-Never: This is similar to the previous item. Does
a selector select no nodes with label A in any instance?

Select-Sat-Static: Does a selector ever select a node? Here,
we check whether a given selector has an effect on at least
one instance graph by selecting at least one node. Selectors
that never select a node are useless and should be corrected.

Select-Sat: Like Select-Sat-Static, except that in addi-
tion to the selector a meta graph is also given as input.

Select-Impl: Does one selector imply another selector?
Select-Impl is useful in predicate dispatch languages, such
as Fred [19] and Socrates [20], where inheritance is replaced
by predicate implication. We cover here the special case
where the predicates are declarative.

Select-First: Does an edge in an instance graph lead to
a node selected by the selector? This is useful for guiding
traversals [11] and for deciding whether a selector influences
a particular branch of the execution of a program [17]. Our
results in this paper should be considered in the context of
the General Pointcut Satisfiability Problem:

Given an AspectJ pointcut p and a Java program G,
is there an execution of G in which p will select
at least one join point?

This problem is undecidable even for a very simple pointcut
language because the undecidability comes from the condi-
tional statements in G.

Therefore we consider a conservative approximation of the
program in the form of a call graph. We assume that all calls
inside a procedure could happen. Because of the simple
structure of meta graphs, we treat dynamic dispatch in a
very simple way: zero or more of the calls could happen.

64

In this paper we show two kinds of results: lower-bound re-
sults, like NP-hardness and co-NP-completeness results and
upper-bound results, like that certain checking problems can
be solved in polynomial time. For the lower-bound results
it is sufficient to consider only very limited programs, e.g.,
programs that only contain calls (without conditional state-
ments). For the usefulness of our upper-bound results the
conservative approximation mentioned above is an issue that
needs to be explored further. The conservative approxima-
tion allows for many more possible program executions than
can happen in practice. But still the upper-bound results are
interesting because universally quantified statements (over
all executions/instances) for the approximation are correct
statements for the real program.

The following properties are preserved by the conservative
approximation: not Select-Sat, Select-Always, Select-Never,
Select-Impl, not Select-First. Note that Select-Sat is not
preserved by the approximation because the meta graph
might have an instance in which a join point is selected but
that instance might never happen as an execution in the real
program.

We show a polynomial-time two-way reduction from SD to
SAJ revealing interesting connections and promoting the
transfer of algorithmic techniques from AspectJ to Deme-
ter and vice-versa. We provide several practically useful
polynomial-time algorithms for some of the problems ,and
we show others to be NP-complete or co-NP-complete. We
present a fixed parameter tractable (FPT) algorithm for one
of the NP-complete problems. This early result indicates a
line of attack for dealing with the intractability inherent in
these problems.

Our NP-completeness proofs are simple but not trivial. For
example, we show that satisfiability and other problems
for AspectJ pointcuts without complement are already NP-
complete. The point of our reduction is that when we trans-
late a boolean formula to a pointcut satisfiability problem,
we can use the graph to simulate negation although the
pointcut language does not itself contain negation.

In this paper we often refer to the traversal graph defined in
[13, 11]. For the purpose of this paper we view the traversal
graph as the Cartesian product of two graphs, where one
graph is the meta graph and the other is the graph version
of the SD selector expression. The Cartesian graph product
G = G1 x G2 of graphs G1 and G» with disjoint point sets
V1 and V5 and edge sets Eq and E» is the graph with point
set u = (u1,u2) and v = (v1,v2) adjacent with whenever
[u1 = v1 and uy adj v2] or [uz = vz and wy adj v1] [8]. We
note that the meta graph structure and selector language in
[11] are more expressive and hence required a more elaborate
construction of traversal graphs.

Our paper uncovers novel aspects of the interplay between
predicates and graphs. We believe that there is potential
for further connections between this paper and the seminal
work of Courcelle relating logic and graphs [1].

In summary the paper provides a novel framework for the
study of the expressiveness of selector languages and their
related algorithmic problems. We discuss the consequences

of this paper for our DAJ implementation.

The rest of the paper is organized as follows: In section 2
we introduce our framework by defining meta graphs and
instance graphs and our selector languages, SAJ and SD,
including translations between them. In section 3 we intro-
duce the problems, including the practical motivation be-
hind them. Section 4 discusses a Fixed Parameter Tractable
algorithm for Satisfiability with an application to Select-Sat.
Section 5 contains related work and section 6 conclusions
and future work.

2. GRAPH STRUCTURE AND SELECTOR
LANGUAGE

For a particular graph there are a possibly infinite number of
instances conforming to the graph structure, each of which,
later, will be mapped to an AspectJ program execution call
trace, or a Demeter object graph traversal. To select inter-
esting points in an execution call trace or an object graph
traversal, we have a general selector language which, later,
will be mapped to AspectJ’s pointcut designator language
or Demeter’s traversal specification.

2.1 Directed Graph and Instances

DEFINITION 1 (DIRECTED GRAPH). A directed graph G
18 a pair < V,E >, where V is a set of vertices and E C
V xV s a set of directed edges. There is a distinguished
vertez r € V, which is the starting vertez in G. Start(G) is
defined on a graph G that returns its distinguished starting
verter for G from which all other nodes are reachable.

We assume a labeling from nodes and edges to a finite al-
phabet, so that Label(x) is the label for a node or edge x.

DEFINITION 2
I is called an instance of G, if I is a tree, Root(I) = Start(G)
and for each edge e = (u,v) € E(I), there is an edge ' =
(u',v') € G so that Label(u) = Label(u') and Label(v) =
Label(v').

2.2 Paths

A path in a graph is a sequence v ... v, where vy, ..., v, are
nodes of the graph; and v; — v;41 is an edge of the graph for
all t € 1.n — 1. We call v; and v, the source and the target
of the path, respectively. If py = vi---v; and p2» = v; - - - vp,
then we define the concatenation pips = vy ---v; - - - V..

Suppose P; and P, are sets of paths where all paths in P;
have the target v and where all paths of P> have the source
v. Then we define?

Py - P, ={p|p=pip> where p1 € P; and p> € P»}.

Pathss (A, B) is defined as all paths from A to B in ® where
A and B are nodes of the meta graph ®.

!The v; in a path don’t have to be distinct. v; is a path
from source v1 to target v1 where n = 1.
2Py U P, is the set union of the paths in P; and Ps.

(INSTANCES OF GRAPH). A directed graph

65

2.3 General Selector Language
We use two selector languages, SAJ and SD, based roughly
on the selector languages of AspectJ and Demeter, respec-

tively. SAJ has the form
Su=1]flow(S) | SIS|S&S|!S (1)

where [is a node label. The following are the evaluation
rules for SAJ. We state them as a reduction, S;:

Si(l) {v|v € I ALabel(v) =1}
S1(flow(S)) = {v|some n € S;(S) reaches v € I}
Sr(S1 1 82) = Sr(S1)US1(Sq)

Si(S1 & S2) = Si(S1)N Si(S2)
Sr(1S) \S1(S)

A traversal specification in SD has the form

D:=[AB|D-D|DID|D&D|'D (2

where A and B are nodes of a meta graph. Such a spec-
ification denotes a set of paths in a given meta graph @,
intuitively as follows:

Selector | Set of paths
[A, B] The set of paths from A to B in ®
D, - D> | Concatenation of sets of paths
D1 | D2 | Union of sets of paths
D, & Dy | Intersection of sets of paths
'D All paths from Source(D) to Target(D)
not satisfying D

For a traversal specification to be meaningful, it has to be
well-formed. Formally, well-formedeness is defined in terms
of two functions, Source and Target, which both map a spec-
ification to a node. The following chart shows the denitions
for Source and Target where Source(D) is the source node
determined by D, and Target(D) is the target node deter-
mined by D:

Selector: D | Source(D) | Target(D)

[A, B] A B
D, - D, Source(Dy) | Target(D2)
D; | D, Source(D1) | Target(D1)
D, & D, Source(Dy) | Target(D1)
'D Source(D) | Target(D)

A traversal specication is well-formed if it determines a source
node and a target node, if each concatenation has a meeting
point, and if each union of a set of paths preserves the source
and the target. This is expressed by the predicate WF:

WF([A, B]) = true
WF(D;y - D;) = WF(D1) AWF(D2) A
Target(D1) =nodes Source(Dy2)
WF(D: | D;) = WF(D:1) AWF(D3) A
Source(D1) =nedes Source(D2)A
Target(Dl) nodes Target(DZ)
WF(D; & D) = WF(D1) AWF(D2) A
Source(D1) =nodes Source(D2)A
Target(D1) =roaes Target(D2)
WF(!D) = WF(D)

If D is well-formed and compatible with @, then PathSets (D)
is a set of paths in ® from the source of D to the target of
D, defined as follows:
PathSets([A4, B])
PathSets(D; - D2)
PathSeto(D1 | D>)
PathSetes(D1 & D>)
PathSets (!D)

Paths<1>(A, B)

PathSets (D) - PathSets(D2)

PathSets (D1) U PathSets (D2)
PathSets(D1) N PathSets (D2)
Pathss (Source(D), Target(D))
—PathSets (D)

We show a reduction from SD to SAJ. In the following, SD
expressions are on the left-hand side and SAJ expressions
are on the right:

T([A,B]) — flow(A)& B
T(D:-D;) — flow(T(D:1)) & T(D>)
T(D1 | D) — T(D1) | T(D2)
T(D: & D) — T(D)) & T(D2)
T(!\D) — 'T(D)

Here is an example reduction of [A, B] - [B, C]:
T([A,B]-[B,C]) — flow(flow(A) & B) & flow(B) & C
= flow(flow(A) & B) & C

flow(A) & flow(B) & C
We also show an informal® reduction from SAJ to an SD
expression D. In the following, SAJ expressions are on the
left-hand side, and SD expressions are on the right:

T(n(l)) — [Source(D),!]
T(flow(l)) — [Source(D),l]- [l, Target(D)]
T(S1182) — T(S1) | T(S2)
T(S1 & S2) — T(S1) & T(S2)
T(S) — T(S)

3. PROBLEMS

In the following section we present various problems related
to selector expressions and reason about their complexity.
Theorems are presented in tables of the form:

Each R; is a complexity result. The first row represents
complexity results for the languages shown in grammars (1)
and (2) without intersection or negation, called the base
language; the second row shows results for these languages
without negation; and the third row shows results for these
languages without intersection. A Y in a result represents a
problem that is trivially true. All proofs are in [12].

3This is informal because a resultant in SD could have mul-
tiple targets.

66

Figure 1: Ladder graph.

Problem | SD | SAJ
- P P
& NP-complete | NP-complete

! NP-complete | NP-complete

Table 1: Complexity results for many problems.

We split this section according to general problems — e.g.
Select-Sat. We refer to particular instances of these prob-
lems for certain languages by the form A/B/C where A is a
general problem or * for all problems, C is the language SD
or SAJ, B is one of —, &, or ! representing the version of
language C. For example, Select-Sat/& /SAJ represents the
Select-Sat problem over the SAJ language with intersection,
and */-/SD represents any problem on the base language, -,
over the SD language.

We use a ladder graph, as shown in Figure 1, as our main
tool to represent boolean forumulas. This graph consists of
a root s, target t, and nodes x; and lz; for i =1 to m. A
path from s to ¢t must go through only one z; or !z; for all ¢
to reflect the fact that each literal in a boolean formula may
be assigned either true or false; but not both. In addition,
we use the following generic constructions.

Many of the problems have similar complexity results, which
are given in Table 1.

3.0.1 SD Generic Construction

For the */-/SD case, we turn the selector into a graph p’ (
[A, B] becomes an edge from A to B.) Then we construct
the cross product traversal graph T(G,p') [13, 11].

The motivation for the cross product T(G,p’) is as follows:
Implementing the strategy S = [A, B] on a class graph G [14]
is straight-forward (called the FROM-TO computation): In
G we do a forward depth-first traversal from A and a back-

ward depth-first traversal from B and take the intersection
of the two. The resulting graph succinctly represents the
desired path set. For a general strategy we want to reduce
the problem of succinctly representing the path set to the
FROM-TO problem and this reduction is achieved by replac-
ing the class graph with a much larger graph and doing the
FROM-TO computation in that graph. This much larger
graph is precisely the cross product of the strategy and the
class graph.

3.0.2 SAJ Generic Construction

We need a generic construction for the */-/SAJ case. We use
the */-/SD case as a guide. In the */-/SD case we flag each
edge selected by a primitive flow(A - B) with A- B. This is
basically the idea behind the traversal graph construction.
We need this labeling to avoid information loss (i.e. the
short-cuts and zigzags of Palsberg et al., [21]). We use a
similar approach for */-/SAJ. The edges selected by each
primitive flow(A) are labeled by flow(A). We can reduce
the SAJ expression to the form s; | --- | s for 1 < k, where
each s; is in the form of either n(l) or £low(s’) because

flow(n(Ai) | flow(n(A2))) = flow(n(A41)) | flow(n(A2)).

Therefore we can build in polynomial time a structure, called
the flow graph, that plays the same role as the traversal
graph. The size of the flow graph is bounded by the size of
the meta graph times the number of flow expressions in the
selector (after removal of nested flows).

We use this construction for */-/SAJ where * in Select-
Never (is the node ever in the flow graph?), Select-Sat (is
the flow graph empty?), Select-Impl (is one flow graph a
subgraph of another flow graph?) and Select-First (which
edges are in the flow graph?).

In our NP-completness proofs we leave out the part that
shows that a problem is in NP and we focus on the harder
NP-hard part. We leave the NP membership part as an
exercise to the reader.

3.1 Select-Sat

We are presenting a proof sketch of one of our complexity-
theoretic results as an example of the kinds of gadgets we
use in our reductions.

DEFINITION 3 (SELECT-SAT). Given a selector p and a
meta graph G, is there an instance tree for G for which p
selects a non-empty set of nodes.

Table 1 shows the complexity results for Select-Sat. The
Select-Sat/-/SD problem has been implemented for a spe-
cial case in Demeter/C++ and for the general case in Deme-
terJ, DJ and DAJ. Our users demanded such a test because
knowing that a traversal specification (selector) will never
select a node indicates, usually, a false assumption about
the class graph (meta graph). Select-Sat/*/SAJ is not cur-
rently implemented in AspectJ, and this can make it harder
to debug pointcut designators. A small typo in one of the
pointcuts may empty the set of selected join points. It would
be helpful to get a warning for the pointcuts that select an
empty set of join points. We hope that our FPT algorithms

67

SAJ Expression | Pointcut
P2 = lzl | x2 P20
p3 = zl p30
P4 = 123 p40)
Pall = p1 & p2 & ps & ps | all()

Table 2: SAJ expressions and AspectJ pointcuts.

in Section 4 will lead to interesting algorithms for the NP-
complete cases for AspectJ and for Demeter.

PRrOOF Select-Sat/€/SD. The proof is by reduction from
3-SAT. Consider a 3-SAT formula ¢. Let vi,vs,...,v, be
the variables. Create a meta graph that is a dag as follows:
a source s with arcs going to z; and !z, arcs from z; and
lz; to xi+1 and !z;41 and finally from z, and !z, to a sink
t. This is G(¢), called a ladder graph, as shown in Figure 1.
Now create an atomic selector for each literal and create the
total selector S(¢) by taking the union and intersection over
literals for each clause. For a literal li = v;/lv; create the
selector "from s to ¢t via > —i.e. “[s,v;] - [v;,t]”. Clearly,
(S(¢), G(¢)) is satisfiable iff ¢ is satisfiable. m|

Our reduction constructs a meta graph and a selector from
the Boolean formula. But our meta graph is really an ab-
straction of a Java program and the selector an abstrac-
tion of an AspectJ pointcut designator. An important point
of our paper is that the meta graph/selector abstraction is
good enough to reason about the computational complexity
at the AspectJ level. To demonstrate this point, we trans-
late an example boolean formula shown in Table 2 directly
to an AspectJ pointcut in Figure 2. Here, x1, x2, x3, nx1,
nx2, and nx3 in Figure 2 correspond to z1, x2, =3, 1, lz2,
and !z3, respectively.

3.2 Select-Sat-Static

DEFINITION 4 (SELECT-SAT-STATIC). Given a selector
p, ts there a meta graph G and an instance tree for G for
which p selects a non-empty set of nodes.

A Select-Sat-Static test is a must for a “perfect” aspect-
oriented system, because a selector that fails for all meta
graphs is clearly useless. Yet, both AspectJ and the Demeter
Tools don’t implement such a test, maybe, because it is
perceived to be unlikely that a user writes such pointcuts or
traversal strategies. Again, we hope that our FPT ideas in
Section 4 will help to develop practically useful algorithms.

The following are the complexities for Select-Sat-Static:

Select-Sat-Static | SD | SAJ
N Y Y
& Y Y

! NP-complete | NP-complete

‘We mention also that the following problem is NP-complete
for both SAJ and SD (even without complement) if we allow
that an instance may be a directed acyclic graph (dag), not

public class Example {

public static void main(String[]l s) {x1(); nx1();}
static void x1(0) { x2(); nx2(); }
static void x2() { x3(); nx3(); }
static void x3() { target(); }
static void nx1() { x2(); nx2(Q); }
static void nx2() { x3(); nx3(); }
static void nx3() { target(); }
static void target() {}
}
aspect Aspect {
pointcut p1(): cflow(call (void x1()))
cflow(call (void nx2()))
I cflow(call (void x3()));
pointcut p2() : cflow(call (void nx1()))
|1 cflow(call (void x2()));
pointcut p3() : cflow(call (void =x1()));
pointcut p4() : cflow(call (void nx3()));
pointcut all(Q): p1() && p2() && p3() && p4();
before(): all() && !within(Aspect) {
System.out.println(thisJoinPoint) ;
}
}

Figure 2: AspectJ example.

just a tree. Since a tree is a dag, we restrict our definition
of the problem to trees.

DEFINITION 5 (SELECT-SAT-DYNAMIC). Given a selec-
tor p, a meta graph G, and an instance tree I for G, does p
select a non-empty set of nodes in I1?

3.3 Select-Impl
DEFINITION 6 (SEL). SEL(s,G,I) is the set of nodes
selected by s in I (which conforms to G).

DEFINITION 7 (SELECT-IMPL). Given two selector ez-

pressions s1 and sz and a graph G, for all instances I of G:
SEL(s1,G,I) is a subset of SEL(s2,G,I).

Predicate-dispatch-based aspect languages such as Socrates
[20] use selector implication as a primitive to generalize in-
heritance. Selector implication is also useful in other appli-
cations. For example, a security policy might state that a
set of nodes accessible by one role (e.g., worker) must al-
ways be a subset of the set of nodes accessible by another
role (e.g., manager). Table 1 shows the complexity results
for !Select-Impl- hence in this table all NP-complete results
are co-NP-complete results for Select-Impl.

3.4 Select-First

DEFINITION 8 (SELECT-FIRST). Given a selector p, a
meta graph G, and an instance I, compute the set of outgo-
ing edges from a node of I satisfying G that might lead to a
target node selected by p.

In the Demeter case the Select-First predicate is the fun-
damental tool to implement traversals efficiently. The ap-
proach is to combine the selector and meta graph into a

68

new graph that for each node tells which outgoing edges
are worthwhile traversing. Worthwhile means that it may
lead to a target node satisfying p in an appropriate sub-
object. See [15] for the generalization of this predicate to
class graphs with is-a and has-a edges. [21] contains an ef-
ficient implementation for a special case that was used in
Demeter/C++. The D*J tools use the AP Library [13] that
implements Select-First/-/SD using the ideas in [11].

The NP-completeness result for Select-Sat/&/SD has inter-
esting implications for the semantics of traversals as we make
the selector language more expressive. The DAJ tool [2] is
an extension of AspectJ with traversals and strategies. Us-
ing the AspectJ declare construct we could write:

declare strategy: sname: "{A -> B}" ;
declare traversal: void foo(): sname(Visitor);

In this DAJ example the expression "A -> B" is analogous
to the SD expression [A, B] This selector expression uses
SD without negation but with intersection. This traversal
defines an adaptive method called foo using the strategy
named sname and the Visitor, which is a normal Java class.
In DAJ intersection is used frequently because it also plays
the role of cleaning the class graph from unwanted informa-
tion.

The semantics of a traversal is defined in terms of Select-
First [11, 15]. This works well for SD without intersection
and complement because we have an efficient algorithm. In
the presence of intersection, we currently implement the fol-
lowing solution: We assume that intersection only appears
at the outermost level. This is a reasonable assumption. To
implement (s1 & s2), compute the traversal graph t1 for s;
and G and the traversal graph 2 for s; and G. Then we
simulate both ¢; and ¢2 on an instance graph. But unfortu-
nately this gives the wrong semantics because we might go
down an edge in the instance graph although it never leads
to a target. Instead we need to construct the cross product
of t; and t2, leading to an explosion in the number of nodes
if we do this multiple times. We know now that there is
no way around this because of the NP-completeness of the
underlying problem.

For the Aspect]J case the predicate is useful to implement
cflow. It tells us along which execution paths we are in
the scope of a pointcut designator where we have to execute
advice. Table 1 shows the complexity results for Select-First.

Consider a selector expression p and a meta graph G in
Select-Sat/&/SAJ. Let’s assume that we can compile p and
G into a function Super(r) that given a node r of an instance
conforming to GG, computes the set of outgoing edges from
r that may lead to a selected node. The function Super en-
codes the information about p and G into a form that is
useful for deciding which edges are worthwhile to traverse
to reach a target node.

Let’s assume that we can construct Super in polynomial-time
and that Super runs in polynomial-time. This would create
a polynomial algorithm for Select-Sat/&/SAJ. Namely, we

compile the pair (p, G) into Super(r) and run Super(r) on
an instance I of G that has the root and an edge to each of
the successors of the root. Note that for each meta graph
G we can generically construct such an instance. Clearly,
the size of r is bounded by the size of G. The input (p, G)
is satisfiable iff Super(r) returns a non-empty set on I; i.e.,
there is an instance graph in which at least one node is
selected.

Note that, the same argument holds for: Select-Sat/&/SD.
In order to prove that (p, G) is unsatisfiable (co-NP-complete
problem) we need only run Super on a generically constructed
instance.

As soon as the selector language becomes too powerful, se-
lecting nodes in instances becomes expensive. We can use
this to prove that Select-First/&/SAJ and Select-First /& /SD
are NP-complete.

3.5 Select-Always

DEFINITION 9
a meta graph G and a node n in G, for all instance graphs
I of G all of the instances of n in I are selected by p.

If an AspectJ or Demeter compiler could answer this ques-
tion efficiently we could drastically speed up compilation

time. Table 1 shows the complexity results for !Select-Always.

3.6 Select-Never

DEFINITION 10
a meta graph G and a node n in G, for all instance graphs
I of G none of the instances of n in I are selected by p.

In addition to the benefits found from Select-Always, effi-
cient solutions to this problem could provide useful feed-
back to users when writing pointcuts or traversals. Often
one writes a pointcut and then refactors a system. The user
would want to know when her pointcuts were possibly no
longer valid after this refactoring. This is just one example
of why this is an important problem. Table 1 shows the
complexity results for !Select-Never.

4. FPT ALGORITHMS

We have shown that Select-Sat is NP-complete. As noted in
[6] the fact that a problem has been shown to be NP-hard is
not a cause for despair. All it really means is that the initial
hope for an exact general algorithm is in vain. There are
a few different avenues of attack at this point - the use of
randomness, the search for good approximate solutions and
use of parametrization. Here we focus on this last approach.
This is work in progress and it is not yet practically useful
because our algorithm works only on a very special kind of
graph structure.

We look more closely at the structure of the input. Select-
SAT consists of a meta graph and a selector. We have shown
this problem to be NP-hard even when the meta graph is the
ladder graph and the selector is a 3-SAT formula. In practice
though, it is often the case that the selector rarely has too
many clauses. In particular we consider situations where our
meta graph is a generalization of the ladder graph and the

(SELECT-ALWAYS). Given a selector p and

(SELECT-NEVER). Given a selector p and

69

conjunctive selector formula has only & clauses. We ask the
question - what is the behavior for a fixed £7 Observe that
the naive approach of trying every possible setting of the
variables in the selector leads to an exponential-time (2")
algorithm. We now demonstrate that in fact for fixed k,
this problem, which we call the k-generalized-ladder-Select-
Sat, is solvable in time that is linear in the size of the formula
and the graph.

The approach of parametrization has been developed by
Downey and Fellows in a seminal series of papers [3]. They
show that the usual combinatorial explosion involved in NP-
hard problems can often be handled if one can get one’s
hands on the right parametrization. In cases where such
a parametrization exists, the problem is said to be Fized
Parameter Tractable. More precisely, a parametrized prob-
lem < z,k >, where z is the input and k the parameter, is
said to be in FPT if there exists an algorithm and a con-
stant ¢ (independent of k), and a function f such that the
algorithm accepts valid inputs in time f(k)|z|®. Note for
example that Vertex Cover is in FPT where k, the size of
the cover, is fixed. On the other hand Independent Set with
k representing the size of the independent set continues to
be intractable even when £k is fixed.

We now define the problem k-generalized-ladder-Select-Sat
and present a fast kernelization scheme to solve it.

DEFINITION 11. k-generalized-ladder-Select-Sat consists of
a generalized ladder graph and a selector formula in conjunc-
tive normal form. The generalized ladder graph is a directed
acyclic leveled graph that has a unique source s and unique
sink t. The graph contains all edges between adjacent lev-
els. At each level the graph has no more than f;(k) vertices,
where i represents the level. See Figure 8. The selector for-
mula is in CNF and has at most k clauses.

Note that our earlier NP-hardness proof goes through for k-
generalized-ladder-Select-SAT when £ is considered to vary
with n, instead of being fixed.

THEOREM 1. k-generalized-ladder-Select-Sat is in FPT.

PROOF. At a high level our strategy is to find in time
polynomial in n, a kernel or the hard core of the problem
which only depends on k£ and not on n; and then we employ
a search tree strategy to try all possible cases in the ker-
nel. Let fmax = max; f;(k) denote the maximum number of
vertices over all rows of the generalized ladder graph.

Kernelization. Consider the selector formula. Each literal is
of the form v where v is a vertex in the associated generalized
ladder graph and selects the set of paths from s to ¢ going
through that vertex v. If the formula has any single literal
clauses then since all paths from s to ¢ satisfying the formula
must pass through that vertex we can prune the metagraph
by removing all vertices other than v from its level. Note
that in this manner we account for all single literal clauses
or the metagraph gets pruned into the empty graph in which
case we know that the selector formula is unsatisfiable. We

Figure 3: General ladder graph.

are now left to consider the case where we have taken care of
all single literal clauses, i.e. we can assume that the formula
only consists of clauses with 2 or more literals. Consider
any clause with more than k * fimax literals. Observe, that
to satisfy each of the remaining (upto) k clauses we need
to only satisfy 1 literal in each clause. Since the clause in
consideration has more than k* fi,ax literals that means this
clause contains a literal that is on a level of the meta graph
different from that of any other vertex needed for satisfying
any of the other clauses. Hence such a clause can be trivially
satisfied. Thus we can eliminate all clauses with more than
k * fmax literals. Thus we are left with a formula with at
most k clauses where each clause has between 2 and & * fmax
literals.

Search tree. Now try setting to true all possible choices
of literals, one from each clause, there are at most k**fmax
possible choices and for each possible choice compute the
subgraph of the meta graph that satisfies that choice. If
all subgraphs are empty then we know that the selector is
unsatisfiable. If some subgraph is nonempty then consider
the clauses that were pruned for having more than k * fimax
literals and pick a literal in each of these clauses on a level
different from all the previously chosen literals and prune
this subgraph so as to satisfy these clauses.

It is easy to see that the above scheme has running time

O(n) 4+ O(k**#max) and hence k-generalized-ladder-Select-
Sat is in FPT. |

S. RELATED WORK

70

[16] is an interesting study of crosscutting mechanisms. They
discuss both the WhereToInfluence-part and the WhatToDo-
part while we focus on the WhereToInfluence-part only. But
in their Table 1 they also put pointcuts and traversal speci-
fications at the same level as we do in this paper. (Demeter
actually uses another incarnation of AOP which is not dis-
cussed in either paper: The visitor signatures are pointcuts
and the visitor method bodies are the advice.) The crosscut
definition in [16] can be applied to selector languages: Two
selectors p1 and p2 crosscut if the set of selected nodes in-
tersect at the instance level or meta graph level but none is
a subset of the other. Crosscutting of selector expressions
is very typical especially if we consider the nodes along the
paths as well (not just the target nodes).

The two papers differ in that we focus on algorithms and
complexity results of selector languages.

In [17], the issue of unnecessary run-time checks in AspectJ
is discussed. The meta graph is considered to be included in
the program text. They use partial evaluation to remove un-
necessary pointcut tests. They don’t analyze the complexity
of the underlying task but instead use a powerful, but po-
tentially expensive tool, to attack the problem. We show
that general elimination of run-time tests (Select-Never and
Select-Always) is NP-complete in the general case.

In Eichberg et al. [5] they use functional queries as their se-
lector language. This is an interesting generalization of the
kind of selector languages discussed in this paper. It would
be useful to analyze the combinatorial problems discussed in
this paper for a simple functional query language as selector
language. Eichberg et al. use XQuery (based on XPath) as
the query language which supports the descendent axis (de-
noted by ”//”) that can express traversal like [A, B] (from
A to B) in our SD selector language.

The study of selector languages is an active topic in the
database community over the past few years. Schwentick
[22] does an extensive study of the equivalent of the Select-
Impl problem for XPath and show it to be co-NP-complete
for a particular subset of XPath. In a paper by Neven
and Schwentick it is shown: Theorem 7. Containment of
XP(DTD, /, //, *)-expressions is in P. This problem matches
with our Select-Impl/-/SD which we also have shown to be
in P [13]. DTD’s correspond to our meta graphs. The dif-
ference with our work is that XPath slices the selector lan-
guage world in a way that is different from AspectJ pointcuts
(SAJ) or Demeter traversals (SD). Our paper also differs in
that we provide a unifying model to study key properties of
a wide variety of selector languages.

Sereni and de Moor [23] study the static determination of
cflow pointcuts in AspectJ. They reason also in terms of
sets of paths, but they use a regular expression style selector
language. They model pointcut designators as automata
which is similar to our translation of selectors into graphs.

They do whole program analysis on the program’s call graph
and try to determine whether a potential join point fits into
one of the following three cases: (1) it always matches a
cflow pointcut; (2) it never matches a cflow pointcut; (3)
it maybe matches a cflow pointcut. In case (3), there is still

a need to have dynamic matching code. They didn’t ana-
lyze the computational complexity of (1, Select-Always) and
(2, Select-Never). Our NP-completeness results for Select-
Always and Select-Never complement their practical analy-
sis.

In [4] an Aspect] compiler, called abc, is discussed and they
found several improvements to implementing cflow over the
Aspect]J compiler ajc. Our work assumes a whole program
analysis but should provide useful input to compiler writ-
ers. Using traversal graphs for compiling certain Aspect]
programs should lead to even more speed-ups.

Mendelzon and Wood [18] analyzed the complexity of find-
ing regular paths in graphs, which is similiar to our Select-
First and Select-Sat problems with subtle differences. They
showed that finding simple regular paths in a graph is NP-
complete problem while finding regular paths is a polynomial-
time problem (if the regular expression language is not too
rich). Their selector language is a regular expression lan-
guage that could be studied in a similar way we have sudied
SAJ and SD. Mendelzon and Wood don’t consider instance
graphs: they operate at the level of selectors (regular ex-
pressions) and meta graphs only.

The work on JAsCo [24, 25] is using a pointcut-style nota-
tion and Demeter-style traversal specifications in the same
system. The selector language approach described in this
paper might lead to a tighter integration of the two lan-
guages.

Gybels and Brichau [7] present a number of language fea-
tures that could be useful for expressing more expressive
pattern-based crosscuts. The language presented is pattern-
based, similar to that found in AspectJ [9], uses Prolog, and
is implemented on SmallTalk. It first the adds unification
as a feature, which allows variable binding. Another fea-
ture are object reifying predicates that (1) provide access
to the “context object” property of the matched join point,
(2) provide direct access to the state of objects, and (3) can
express the way a certain object should respond to messages.

Lastly, join point shadows are used to access static proper-
ties of the program, and recursion is allowed in defintions.
The latter makes this language Turing complete.

Walker presents the concept of Implicit Contert in his dis-
sertation [26]. Implicit context consists of three concepts:
boundaries between conflicting world views, contextual dis-
patch which is used to alter communications, and communi-
cation history which is used to retrieve previous state when
performing contextual dispatch. This allows a programmer
to express the essential structure of our software modules,
through the use of implicit context, to make those modules
easier to reuse and the systems containing those modules
easier to evolve. Expressing these context requires expres-
sive languages which could benefit from our work.

Several papers use regular expressions as selector language
[23] and [10]. Several of our results should carry over to
regular expressions but the details need to be worked out in
future work.

71

6. CONCLUSIONS AND FUTURE WORK

We have studied graph-theoretic decision problems funda-
mental to aspect-oriented software development. We have
simplified our model by considering only meta graphs and
instance graphs with has-a edges. But it is not hard to
generalize our algorithms and proofs to more general meta
graphs as has been done in [11] for Select-First/-/SD.

The simplified model promotes a succinct description of both
upper and lower bounds for a variety of relevant problems.
In doing so we have made contributions to complexity the-
ory — a new FPT algorithm for a subset of Select-Sat and
new NP-completeness proofs — and PL theory — two models
of selector languages and a collection of related algorithms
useful in AOSD tools (compilers, IDEs) that assume the
whole world assumption.

The NP-completeness results are useful for three reasons:
(1) The NP-completeness of the monotone version of the

Satisfiability problem for the AspectJ pointcut language (Select-

Sat/&/SAJ) is surprising because Satisfiability for mono-
tone boolean formulas can be solved in polynomial-time.(2).
They help us to steer around language features that might
be expensive to implement. (3) In case we need the NP-
complete language features, we can think carefully about
what kind of algorithms degrade gracefully if certain fea-
tures of the input are bounded. This is the topic of FPT.

Many of the efficient algorithms we describe are practically
useful, and have not been described in the literature so far.
We have implemented algorithms for several of the */-/SD
problems in D*J and they are distributed separately through
the AP Library. Select-First/-/SD is used heavily in the D*J
tools whenever an object is traversed. An empirical study
of traversals is in [28].

This is just the beginning in reasoning about the relationship
between different pointcut languages and learning how to
utilize different languages’ features in an efficient manner.
For example, a common Aspect]J idiom is to capture a call
only in certain contexts; say a call to £ () but not underneath
a call to g(). This is written in AspectJ as

call(void £()) & !cflow(void g())

‘We can use our results from this paper to see that reason-
ing about this statement uses an NP-complete sublanguage.
However, we can write an equivalent Demeter traversal as

from main() bypassing g() to £()

that uses a polynomial-time sublanguage. So, we will use
this framework to unify multiple pointcut languages in an
intelligent manner.

In future work we want to study incremental versions of the
problems which are important for incremental compilation.
We also want to focus on studying shy selector languages.
Both SAJ and SD are shy selector languages but they can
be improved and maybe integrated. A ”control-flow-shy”
selector language is discussed in [5]. In addition to minimiz-
ing information from the class graph, we want to minimize
information from the control-flow graph in the selectors.

7. REFERENCES

[1]

[5]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

B. Courcelle. Graph rewriting: An algebraic and

logical approach. In J. van Leeuwen et al, editor,

Handbook of Theoretical computer Science, Vol B.
North Holland, 1990.

Doug Orleans and Karl J. Lieberherr. DAJ: Demeter
in AspectJ home page.
http://www.ccs.neu.edu/research/demeter/DAJ/.

R. G. Downey and M. R. Fellows. Parameterized
Complezity. Springer, 1999.

B. Dufour, C. Goard, L. Hendren, C. V. erbrugge,
0. de Moor, and G. Sittampalam. Measuring the
dynamic behaviour of aspectj programs. In

D. Schmidt, editor, OOPSLA, Vancouver, CA, 2004.
ACM Press.

M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts
as functional queries. In The Second ASIAN
Symposium on Programming Languages and Systems
ASPLAS, 2004.

M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1990.

K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 60—69.
ACM Press, 2003.

F. Harary. Graph Theory. Addison Wesley, 1994.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. Griswold. An Overview of AspectJ.
In J. Knudsen, editor, ECOOP, Budapest, 2001.
Springer Verlag.

S. Krisnamurthi, K. Fisler, and M. Greenberg.
Verifying aspect advice modularly. In FSE, 2004.

K. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. TOPLAS, 26(2):370-412,
2004.

K. J. Lieberherr, J. Palm, and R. Sundaram.
Expressiveness and complexity of crosscut languages.
Technical Report NU-CCIS-04-10, Northeastern
University, September 2004.

K. J. Lieberherr and B. Patt-Shamir. Traversals of
Object Structures: Specification and Efficient
Implementation. Technical Report NU-CCS-97-15,
College of Computer Science, Northeastern University,
Boston, MA, Sep. 1997.

K. J. Lieberherr and B. Patt-Shamir. Traversals of
Object Structures: Specification and Efficient
Implementation. Technical Report NU-CCS-97-15,
College of Computer Science, Northeastern University,
Boston, MA, Sep. 1997.

K. J. Lieberherr and M. Wand. Traversal semantics in
object graphs. Technical Report NU-CCS-2001-05,
Northeastern University, May 2001.

72

[16]

[17]

18]

[19]

[20]

21]

[22]

(23]

[24]

[25]

[26]

27]

28]

H. Masuhara and G. Kiczales. Modeling Crosscutting
in Aspect-Oriented Mechanisms. In ECOOP, June
2003.

H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
R. Cytron and G. Leavens, editors, FOAL, Enschede,
Netherlands, 2002.

A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. In VLDB, 1989.

D. Orleans. Incremental programming with extensible
decisions. In Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD), Enschede, The Netherlands, April 2002.

D. Orleans. The Socrates Programming Language,
September 2004. http://socrates-lang.sf.net/.

J. Palsberg, C. Xiao, and K. J. Lieberherr. Efficient
implementation of adaptive software. TOPLAS,
17(2):264-292, Mar. 1995.

T. Schwentick. Xpath query containment. SIGMOD
Rec., 33(1):101-109, 2004.

D. Sereni and O. de Moor. Static analysis of aspects.
In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 30—39.
ACM Press, 2003.

D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for component
based software development. In Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 21-29. ACM Press, 2003.

W. Vanderperren. Combining Aspect-Oriented and
Component-Based Software Engineering. PhD thesis,
Vrije Universiteit Brussel, 2004.

R. Walker. Essential software structure through
implicit context. Ph.D. dissertation, The University of
British Columbia, March 2003.

P. Wu and K. J. Lieberherr. Compilation of Pointcut
Designators using Traversals. Technical Report
NU-CCIS-03-16, Northeastern University, December
2003.

P. Wu and M. Wand. An Empirical Study of the
Demeter System. In Proceedings of the SPLAT
workshop of the 8rd international conference on
Aspect-Oriented Software Development, 2004.

	Contents
	Preface
	Message from the Program Committee Chair
	Proving aspect-oriented programming laws
	A join point for loops in AspectJ
	How to Compile Aspects with Real-Time Java
	Slicing AspectJ Woven Code
	Back to the Future: Pointcuts as Predicates over Traces
	Aspectual Caml: an Aspect-Oriented Functional Language
	MiniMAO: Investigating the Semantics of Proceed
	Expressiveness and Complexity of Crosscut Languages

