
Swift × Northwest, October 27, 2017

These are a Few of My
Stateful Machines

Curt Clifton
The Omni Group
Twitter: @curtclifton
Web: www.curtclifton.net

http://www.curtclifton.net

Goals

• Understand the basics of state machines

• Recognize when one is appropriate

• Quickly create state machines in Swift

What are State Machines?

Demo

Terms

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

Downloading

Received
Thumbnail

Received Image

Did Set
Image Vendor

States
Initial  
State

Transitions

Triggers

Actions

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

class ImageCollectionViewCell: UICollectionViewCell {
 @IBOutlet weak var imageView: UIImageView! 
 private var state: State 
 …
} 

private enum State {
 case pending
 case loading
 case thumbnail
 case full
}

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

class ImageCollectionViewCell: UICollectionViewCell {
 @IBOutlet weak var imageView: UIImageView! 
 private var state: State = .pending 
 …
} 

private enum State {
 case pending
 case loading
 case thumbnail
 case full
}

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

class ImageCollectionViewCell: UICollectionViewCell {
 @IBOutlet weak var imageView: UIImageView! 
 private var state: State = .pending 
 …
} 

private enum State {
 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 …
 }

 func receivedThumbnail(_ thumbnail: UIImage, 

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

} 

private enum State {
 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 state = .loading
 …
 }

 func receivedThumbnail(_ thumbnail: UIImage, 
 for id: ImageID) {
 state = .thumbnail
 …
 }

 func receivedImage(_ fullResolutionImage: UIImage, 
 for id: ImageID) {
 state = .full
 …
 }

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 state = .loading
 imageView.image = placeholder
 }

 func receivedThumbnail(_ thumbnail: UIImage, 
 for id: ImageID) {
 state = .thumbnail
 …
 }

 func receivedImage(_ fullResolutionImage: UIImage, 
 for id: ImageID) {
 state = .full
 …
 }
}

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 state = .loading
 imageView.image = placeholder
 }

 func receivedThumbnail(_ thumbnail: UIImage, 
 for id: ImageID) {
 state = .thumbnail
 imageView.image = thumbnail
 }

 func receivedImage(_ fullResolutionImage: UIImage, 
 for id: ImageID) {
 state = .full
 …
 }
}

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 state = .loading
 imageView.image = placeholder
 }

 func receivedThumbnail(_ thumbnail: UIImage, 
 for id: ImageID) {
 state = .thumbnail
 imageView.image = thumbnail
 }

 func receivedImage(_ fullResolutionImage: UIImage, 
 for id: ImageID) {
 state = .full
 imageView.image = fullResolutionImage
 }
}

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 state = .loading
 imageView.image = placeholder
 }

 func receivedThumbnail(_ thumbnail: UIImage, 
 for id: ImageID) {
 state = .thumbnail
 imageView.image = thumbnail
 }

 func receivedImage(_ fullResolutionImage: UIImage, 
 for id: ImageID) {
 state = .full
 imageView.image = fullResolutionImage
 }
}

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

class ImageCollectionViewCell: UICollectionViewCell {
 @IBOutlet weak var imageView: UIImageView! 
 private var state: State = .pending 
 …
 override func prepareForReuse() {
 super.prepareForReuse()
 imageVendor = nil
 }
} 

private enum State {
 case pending
 case loading
 case thumbnail
 case full
}

extension ImageCollectionViewCell: ImageVendorDelegate
{
 func downloading(id: ImageID) {
 state = .loading

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

class ImageCollectionViewCell: UICollectionViewCell {
 @IBOutlet weak var imageView: UIImageView! 
 private var state: State = .pending 
 var imageVendor: ImageVendor? {
 didSet {
 state = .pending
 …
 }
 }

 override func prepareForReuse() {
 super.prepareForReuse()
 imageVendor = nil
 }
} 

private enum State {
 case pending
 case loading
 case thumbnail

Swift Enumerations

Downloading/
Show placeholder

Received
Thumbnail/

Show
thumbnail

Received Image/
Show image

Did Set
Image Vendor/

Clear image

Pending Loading

ThumbnailFull

Gesture Recognizer Example

Demo

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private var state: State = .initial { … }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 override func viewDidLoad() {
 super.viewDidLoad()
 …
 state = .readingModelState
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private var state: State = .initial {
 didSet {
 guard state != oldValue else { return }

 switch state {
 case .readingModelState:
 if (modelIsChecked) {
 self.thenSetState(to: .checked)
 } else {
 self.thenSetState(to: .unchecked)
 }
 }
 …
 }

 private func thenSetState(to state: State) {
 DispatchQueue.main.async {
 self.state = state
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private var state: State = .initial {
 didSet {
 guard state != oldValue else { return }

 switch state {
 …
 case .unchecked:
 resetGestureRecognizer()
 updateControls()
 …
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 @IBAction func gestureDidUpdate(_ pan: UIPanGestureRecognizer) {
 do {
 let region = try PanRegion(panRecognizer: pan)
 switch pan.state {
 case .began:
 beganSwipe(in: region)
 case .changed:
 continuedSwipe(in: region)
 case .ended:
 endedSwipe()
 case .failed:
 failedSwipe()
 case .possible, .cancelled: // cancel ourselves to reset
 break
 }
 } catch is RangeError {
 endedSwipe()
 } catch {
 failedSwipe()
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

private enum State {
 case initial
 case readingModelState

 case unchecking
 case unchecked

 case checking
 case checked

 case checkSwipe(substate: CheckSwipeState)
 case uncheckSwipe(substate: UncheckSwipeState)
}

private enum CheckSwipeState {
 case hand
 case elbow
 case shoulder
}

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private func beganSwipe(in region: PanRegion) {
 switch state {
 case .unchecked
 where region == PanRegion(row: 2, column: 1):
 state = .checkSwipe(substate: .hand)
 …
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private func failedSwipe() {
 switch state {
 case .checkSwipe:
 state = .unchecked
 …
 }
 }

 private func endedSwipe() {
 switch state {
 case .checkSwipe(substate: .shoulder):
 …
 case .checkSwipe:
 state = .unchecked
 …
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private func continuedSwipe(in region: PanRegion) {
 switch state {
 case .checkSwipe(substate: .hand)
 where region == PanRegion(row:3, column: 2):
 state = .checkSwipe(substate: .elbow)
 case .checkSwipe(substate: .elbow)
 where region == PanRegion(row: 1, column: 3):
 state = .checkSwipe(substate: .shoulder)
 …
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private func continuedSwipe(in region: PanRegion) {
 switch state {
 …
 case .checkSwipe(substate: .elbow)
 where region.column == 1:
 state = .unchecked
 case .checkSwipe(substate: .shoulder)
 where region.column < 3:
 state = .unchecked
 case .checkSwipe(substate: .shoulder)
 where region == PanRegion(row: 2, column: 3):
 state = .unchecked
 …
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private func endedSwipe() {
 switch state {
 case .checkSwipe(substate: .shoulder):
 state = .checking
 …
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private var state: State = .initial {
 didSet {
 …
 switch state {
 case .checking:
 modelIsChecked = true
 panRecognizer.isEnabled = false
 particleScene.isPaused = false
 particleNode.resetSimulation()
 UIView.animate(withDuration: 1.5, animations: {
 self.checkImage.alpha = 1
 }, completion: …)
 …
 }
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private var state: State = .initial {
 didSet {
 …
 switch state {
 case .checking:
 modelIsChecked = true
 panRecognizer.isEnabled = false
 particleScene.isPaused = false
 particleNode.resetSimulation()
 UIView.animate(withDuration: 1.5, animations: {
 self.checkImage.alpha = 1
 }, completion: …)
 …
 }
 }
 }

 private var state: State = .initial {
 didSet {
 …
 switch state {
 case .checking:
 modelIsChecked = true
 panRecognizer.isEnabled = false
 particleScene.isPaused = false
 particleNode.resetSimulation()
 UIView.animate(withDuration: 1.5, animations: {
 self.checkImage.alpha = 1
 }, completion: { _ in
 self.particleScene.isPaused = true
 self.thenSetState(to: .checked)
 })
 …
 }
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

 private var state: State = .initial {
 didSet {
 …
 switch state {
 …
 case .checked:
 resetGestureRecognizer()
 updateControls()
 …
 }
 }
 }

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

Idle

On enter:
Prepare to play

Initial
Reading Model

State

Unchecking

On enter:
Model ← unchecked

Disable gesture recognizer
Hide checkmark with animation

Unchecked

On enter: reset
gesture recognizer,

update controls

Checked

On enter: reset
gesture recognizer,

update controls

Check Swipe

Hand

Elbow

Shoulder

Uncheck Swipe

RightMiddleLeft

Checking

On enter:
Model ← checked

Disable gesture recognizer
Show checkmark with animation

ε [modelIsChecked]

ε [!modelIsChecked]

Animation complete
Animation complete

viewDidLoad

Began Swipe
[region = r2, c1]

Began Swipe
[region = c3]

Cont. Swipe
[region = r3, c2]

Cont. Swipe
[region = r1, c3]

Ended Swipe
[! in Left]

Cont. Swipe
[region = c1]

Cont. Swipe
[region < c3]

Cont. Swipe
[region < c2]

Cont. Swipe
[region > c2]

Cont. Swipe
[region > c1]

Ended Swipe

Ended Swipe
[! In Shoulder]

Ended Swipe

Failed Swipe

Failed Swipe

Cont. Swipe
[region < c3]

Cont. Swipe
[region = r2, c3]

Optimization

Cartoon of the Day

Premature optimization is the root of all evil,
so to start this project I’d better come up with
a system that can determine whether a
possible optimization is premature or not.

https://xkcd.com/1691/

Audio Player Example

Demo

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

What’s New Here?

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

What’s New Here?

Timers

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

What’s New Here?

On-exit Actions

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

What’s New Here?

Parallel Substates

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

 private var state: PlaybackState = .idle {
 didSet {
 guard (state != oldValue) else { return }

 // On Exit actions
 switch oldValue {
 case .playing:
 stopTimeUpdateTimer()
 …
 }

 // On Enter actions
 switch state {
 case .playing:
 startTimeUpdateTimer()
 player.play()
 …
 }
 }
 }

 private func startTimeUpdateTimer() { // Timer 1
 assert(timeUpdateTimer == nil)

 let newTimer = Timer.scheduledTimer( 
 withTimeInterval: timerFrequency,  
 repeats: true,  
 block: { _ in
 …
 updateTimeLabel(animated: true)
 updateScrubberTime()
 })
 timeUpdateTimer = newTimer
 }

 private func stopTimeUpdateTimer() { // Timer 1
 timeUpdateTimer?.invalidate()
 timeUpdateTimer = nil
 }

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

private enum PlaybackState {
 case reset
 case idle
 case playing
 case paused
 case scrubbing(motion: ScrubbingMotion, 
 history: PlayingSubstate, 
 position: PlaybackPosition)
}

private enum ScrubbingMotion {
 case held(PlayingSubstate)
 case dragging
}

private enum PlayingSubstate {
 case playing
 case paused
}

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

 private func sliderTouchDown() {
 switch state {
 case .playing:
 state = .scrubbing(motion: .held(.playing),  
 history: .playing,  
 position: PlaybackPosition(slider: 
 playbackPosition))
 …
 }
 }

Scrubbing (slider position)
On exit: player.time = slider.position

Held

Will Disappear

ε
Play [!isNearEnd]

Play [isNearEnd] /
player.time = 0
slider.pos = 0

Play

Pause /
player.pause()

Stop

StopStop

StopStop

Did Finish /
Update time label

Update slider

Slider touch down

Slider Touch UpSlider Touch Up [isNearEnd]

Slider Touch Up
[!isNearEnd]

Scrubbed [far] /
Update time label

Scrubbed || Timer 3
[!far && (was paused || isNearEnd)] /

Update time label

Scrubbed || Timer 3
[!far && (was playing && !isNearEnd)] /

player.time = slider.position
player.play()

Timer 1 /
Update time label

Update slider
Timer 2 /

Update time label

Slider touch down
Will Disappear

Will Disappear

Scrubbed [far] /
Update time label

Reset

On enter:
player.stop()

player.time = 0
Update time label

Update slider

Idle

On enter:
Prepare to play

Playing

On enter:
Start Timer 1
player.play()

On exit:
Stop Timer 1

Paused

Playing

On enter:
Start Timer 2

On exit:
Stop Timer 2

Dragging

On enter:
player.pause()
Start Timer 3

On exit:
Stop Timer 3

Was Paused

Paused

Was Playing

Did Finish /
Update time label

Completeness

Recap

Recap

• States

class ImageCollectionViewCell: UICollectionViewCell {
 private var state: State = .pending 
 …
} 

private enum State {
 case pending
 case loading
 case thumbnail
 case full
}

Recap

• States

• Transitions

 override func viewDidLoad() {
 super.viewDidLoad()
 …
 state = .readingModelState
 }

Recap

• States

• Transitions

• On enter/exit

 private var state: State = .initial {
 didSet {
 guard state != oldValue else { return }

 switch state {
 …
 case .unchecked:
 resetGestureRecognizer()
 updateControls()
 …
 }

Recap

• States

• Transitions

• On enter/exit

• Epsilon transitions

 private var state: State = .initial {
 didSet {
 …
 switch state {
 case .readingModelState:
 …
 self.thenSetState(to: .checked)
 …
 }
 …
 }
 }
 private func thenSetState(to state: State) {
 DispatchQueue.main.async {
 self.state = state
 }
 }

Recap

• States

• Transitions

• On enter/exit

• Epsilon transitions

• Timers

 private func startTimeUpdateTimer() { // Timer 1
 assert(timeUpdateTimer == nil)

 let newTimer = Timer.scheduledTimer( 
 withTimeInterval: timerFrequency,  
 repeats: true,  
 block: { _ in
 …
 updateTimeLabel(animated: true)
 updateScrubberTime()
 })
 timeUpdateTimer = newTimer
 }

 private func stopTimeUpdateTimer() { // Timer 1
 timeUpdateTimer?.invalidate()
 timeUpdateTimer = nil
 }

Recap

• States

• Transitions

• On enter/exit

• Epsilon transitions

• Timers

• Depth

private enum PlaybackState {
 case reset
 case idle
 case playing
 case paused
 case scrubbing(motion: ScrubbingMotion, 
 history: PlayingSubstate, 
 position: PlaybackPosition)
}

private enum ScrubbingMotion {
 case held(PlayingSubstate)
 case dragging
}

private enum PlayingSubstate {
 case playing
 case paused
}

Recap

• States

• Transitions

• On enter/exit

• Epsilon transitions

• Timers

• Depth

• Completeness

Thank you!

These are a Few of My
Stateful Machines

Curt Clifton
The Omni Group
Twitter: @curtclifton
Web: www.curtclifton.net

http://www.curtclifton.net

