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Abstract

Specifications that are used in detailed design and in the documentation of existing
code are primarily written and read by programmers. However, most formal specifi-
cation languages either make heavy use of symbolic mathematical operators, which
discourages use by programmers, or limit assertions to expressions of the underlying
programming language, which makes it difficult to write exact specifications. More-
over, using assertions that are expressions in the underlying programming language
can cause problems both in runtime assertion checking and in formal verification,
because such expressions can potentially contain side effects. The Java Modeling
Language, JML, avoids these problems. It uses a side-effect free subset of Java’s ex-
pressions to which are added a few mathematical operators (such as the quantifiers
\forall and \exists). JML also hides mathematical abstractions, such as sets and
sequences, within a library of Java classes. The goal is to allow JML to serve as a
common notation for both formal verification and runtime assertion checking; this
gives users the benefit of several tools without the cost of changing notations.
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1 Introduction

The Java Modeling Language, JML [1,2], is the result of a cooperative, inter-
national effort aimed at providing a common notation and semantics for the
specification of Java code at the detailed-design level [3]. JML is being de-
signed cooperatively so that many different tools can use a common notation
for Hoare-style behavioral interface specifications. In this paper we explain
the features of JML’s design that make its assertions easily understandable
by programmers and suitable for both runtime assertion checking and formal
verification.

1.1 Background

By a Hoare-style specification we mean one that uses pre- and postconditions
to specify the behavior of methods [4–7]. A behavioral interface specification
language (BISL) is a specification language that specifies both the syntactic
interface of a module and its behavior [8–11]. JML, the interface specification
languages in the Larch family [8–11] and RESOLVE/C++ [12,13] are BISLs.
Most design by contract languages and tools, such as Eiffel [14,15] and APP
[16], are also BISLs, because they place specifications inside programming
language code. By contrast, neither Z [17–19] nor VDM [20,21,5,22] is a BISL;
they have no way to specify interface details for a particular programming
language. OCL [23,24] is a BISL for the UML, but the UML itself is language-
independent; this poses problems for a Java programmer, because the UML
does not have standard notations for all details of Java method signatures.
For example, the UML’s syntax for specifying the signatures of operations
has no standard notation for declaring that a Java method is strictfp or for
declaring the exceptions that a method may throw [25, pp. 128-129] [26, p.
516]. 1 Also the OCL has no standard constraints that correspond to JML’s
exceptional postconditions. Because BISLs like JML specify both interface
and behavior, they are good at specifying detailed designs that include such
Java details. This makes JML well suited to the task of documenting reusable
components, libraries, and frameworks written in Java.

1 Larman notes that the UML has some nonstandard ways to specify the exceptions
that a method may throw, by either using Java’s own syntax directly or by using a
“property string”.

2



1.2 Tool Support

Because BISLs are easily integrated with code, they lend themselves to tool
support for activities related to detailed design, coding, testing, and mainte-
nance. An important goal of JML is to enable a wide spectrum of such tools.
Besides tools that enforce JML’s semantics (e.g., type checking), the most
important JML tools help with the following tasks.

Runtime checking and testing. The Iowa State group provides (via www.

jmlspecs.org):
• the jmlc runtime assertion checking compiler [27], which generates class

files from JML-annotated Java sources, 2 and
• the jmlunit tool [28], which uses the runtime assertion checker to generate

test oracle code for JUnit tests.
Documentation. David Cok provides the jmldoc tool, also available through
www.jmlspecs.org, which generates HTML documentation similar to that
produced by Javadoc [29], but containing specifications as well. The gen-
erated documentation is useful for browsing specifications or publishing on
the web.

Static analysis and verification. The following tools are prepared by our
partners at Compaq and the University of Nijmegen:
• The ESC/Java tool [30–32] statically checks Java code for likely errors.

ESC/Java understands a subset of JML annotations.
• The ESC/Java2 tool [?] extends ESC/Java to understand all of JML and

to check most of it.
• The LOOP tool [33–36] assists in the formal verification of the correctness

of implementations from JML specifications, using the theorem prover
PVS.

In addition, the Daikon dynamic invariant detector [37,38] outputs invariants
for Java programs in a subset of JML, and the Korat automated testing tool
[39] uses the jmlunit tool to exercise the test data it derives.

In this paper, we discuss how JML meets the needs of tools for runtime asser-
tion checking, documentation, static analysis, and verification. We focus on
runtime assertion checking and formal verification, which we consider to be
the extremes of the spectrum of tools that a BISL might support. The tasks of
runtime assertion checking and formal verification have widely differing needs:

• Runtime assertion checking places a high premium on executability. Many

2 Besides this runtime assertion checking work at Iowa State, which relies on adding
instrumentation to compiled code, Steven Edwards’s group at Virginia Tech is work-
ing on a wrapper-class based approach to runtime assertion checking that will allow
instrumentation of programs for which source code is not available.
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specification languages intended for runtime assertion checking, such as Eif-
fel [14,15] and APP [16], only allow assertions that are completely exe-
cutable. This is sensible for a language that is intended only to support
runtime assertion checking and not formal verification.

• On the other hand, formal theorem proving and reasoning place a high
premium on the use of standard mathematical notations. Thus, most spec-
ification languages intended for formal reasoning or verification, such as
VDM, the members of the Larch family, and especially Z, feature a variety
of symbolic mathematical notations. Many expressive mathematical nota-
tions, such as quantifiers, are impossible, in general, to execute at runtime.
Again, including such notations is sensible for a language intended only to
support formal theorem proving and reasoning and not runtime assertion
checking.

1.3 Problems

We begin by describing some problems that arise when addressing the needs
of the range of tools exemplified by runtime assertion checking and formal
verification. Like the tools, the problems encompass a broad range, including
issues of notation, logic, and expressiveness.

1.3.1 Notational Problem

It is often said that syntax does not matter; however, our experience with
Larch/Smalltalk [40] and Larch/C++ [41–45] showed that programmers ob-
ject to learning a specialized mathematical notation (the Larch Shared Lan-
guage). This is similar to the problems found by Finney [46], who did a prelim-
inary experiment demonstrating that the symbolic notation in Z specifications
may make them hard to read. Conversely, in executable languages like Eiffel
and APP, programmers feel comfortable with the use of the programming lan-
guage’s expressions in assertions. Such an assertion language is therefore more
appealing for purposes of documentation than highly symbolic mathematical
notations.

To summarize, the first problem that we address in this paper is how to provide
a good syntax for specification expressions. Specification expressions are the
syntactic forms that are used to denote values in assertions. By a good syntax
we mean one that is close enough to programming language expressions that
programmers feel comfortable with it and yet has all of the features necessary
to support both runtime assertion checking and formal verification.
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1.3.2 Undefinedness Problem

Expressions in a programming language may abruptly terminate (e.g., throw
exceptions) and may go into infinite loops; consequently, they may have un-
defined values from a strictly mathematical point of view. Programming lan-
guages typically provide features to control what subexpressions must be eval-
uated, which can be used to avoid such undefinedness. For example, Java pro-
vides short-circuit versions of boolean operators (such as && and ||) that allow
programmers to suppress evaluation of some subexpressions.

We want both programmers and mathematicians to use JML’s notations;
hence, JML’s specification expressions should not only look like Java’s ex-
pressions and use Java’s semantics, but should also validate the standard laws
of logic. However, because of a potential for undefinedness, Java expressions
do not satisfy all the standard rules of logic; for example, in Java the conjunc-
tion E1 && E2 is not equal to E2 && E1, although in logic they would be equal.
To resolve this conflict, we are willing to accept a slightly different semantics
for assertion evaluation as long as programmers are not too surprised by it.

Thus, the second problem we address in this paper is how to find a semantics
for expressions used in assertions that validates standard laws of logic and
yet does not surprise programmers and is still useful for runtime assertion
checking.

1.3.3 Side Effects Problem

Another important semantic issue is that expressions in a programming lan-
guage like Java (and most others, including Eiffel) can contain side effects.
Side effects have a very practical problem related to runtime assertion check-
ing. It is generally assumed that assertions may be evaluated or skipped with
no change in the outcome of a computation, but an assertion with side effects
has the potential to alter the computation’s outcome. For example, an asser-
tion with side effects might mask the presence of a bug that would otherwise
be revealed or cause bugs that are not otherwise present. Because one of the
principal uses of runtime assertion checking is debugging and isolating bugs,
it is unacceptable for side effects from assertion checking to alter the outcome
of a computation.

Thus, the third problem that we address in this paper is how to prevent
side effects in assertions while still retaining as much of the syntax of normal
programming language expressions as possible.
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1.3.4 Mathematical Library Problem

Most specification languages come with a library of mathematical concepts
such as sets and sequences. Such concepts are especially helpful in specify-
ing collection types. For example, to specify a Stack type, one would use a
mathematical sequence to describe, abstractly, the states that a stack object
may take [47]. VDM, OCL, Z, and the interface specification languages of the
Larch family all have libraries of such mathematical concepts. They also are
standard in theorem provers such as PVS.

However, as discussed in Section 1.3.1, we want to limit the barriers that Java
programmers must overcome to use JML. Thus, the fourth problem that we
address in this paper is how to provide a library of mathematical concepts
in a way that does not overwhelm programmers, and yet is useful for formal
verification.

1.4 Other Goals of JML

In addition to providing solutions to the preceding four problems, the design
of JML is guided and constrained by several other goals. One of the most
important of these goals is to allow users to write specifications that document
detailed designs of existing code. This motivates the choice of making JML
a BISL, as described above. Moreover, we would like JML to be useful for
documenting code regardless of whether it was designed according to any
particular design method or discipline. This is important because the cost of
specification is high enough that it is not always justified until one knows that
the design and the code have stabilized enough to make the documentation
potentially useful to other people.

In general, JML’s design adheres to the goal of being able to document existing
designs; however, there is one significant aspect of JML’s design that departs
from this goal—JML imposes the specifications of supertypes on subtypes,
a property termed specification inheritance, in order to achieve behavioral
subtyping [48].

JML’s use of specification inheritance is justified by another of our goals: we
want JML to support modular reasoning, that is, reasoning about the be-
havior of a compilation unit using just the specifications of the compilation
units that it references (as opposed to the details of their implementations).
Modular reasoning is important because without it, the difficulty of under-
standing an object-oriented program increases much more rapidly than the
size of the program, and thus the benefits of the abstraction mechanisms in
object-oriented languages are lost. Consequently, modular reasoning is also
important for formal verification, because then the scope of the verification
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problem is limited.

Specification inheritance, and the resulting behavioral subtyping, allows mod-
ular reasoning to be sound, by allowing one to reason based on the static
types of references. Subsumption in Java allows a reference to a subtype object
to be substituted for a supertype reference. The requirements of behavioral
subtyping [48–54] guarantee that all such substituted objects will obey the
specifications inherited from the static type of the reference [48,55,56].

Because modular reasoning provides benefits to programmers and verifiers,
we favor specification inheritance over the conflicting goal of being able to
document existing designs that do not follow behavioral subtyping. In any
case, it is possible to work around the requirements of behavioral subtyping
for cases in which a subtype does not obey the inherited specifications of its
supertype(s). One simply underspecifies each supertype enough to allow all
of the subtypes that are desired [53,54]. Note that this work-around does not
involve changing the code or the design, but only the specification, so it does
not interfere with the goal of documenting existing code.

1.5 Outline

The remainder of this paper is organized as follows. The next section discusses
our solution to the notational problem described above. Having described the
notation in general terms, Section 3 provides more background on JML. The
subsequent three sections treat the remaining problems discussed above. The
paper ends with a discussion of related work and some conclusions.

2 Solving the Notational Problem

To solve the notational problem described in Section 1.3.1, JML generally fol-
lows Eiffel, basing the syntax of specification expressions on Java’s expression
syntax. However, because side effects are not desired in specification expres-
sions, JML’s specification expressions do not include Java expressions that can
cause obvious side effects, i.e., assignment expressions and Java’s increment
and decrement operators (++ and --).

Furthermore, to make JML suitable for formal verification efforts, JML in-
cludes a number of operators that are not present in Java [2, Section 3]. The
syntax of these operators comes in two flavors: those that are symbolic and
those that are textual.

We did not want to introduce excess notation that would cause difficulties
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for programmers when reading specifications, so JML adds just five symbolic
operators. Four of these are logical operators: forward and reverse implication,
written ==> and <==, respectively, and logical equivalence and inequivalence,
written <==> and <=!=>, respectively. The inclusion of symbols for logical
operators is inspired by the calculational approach to formal methods [57–59].
The other symbolic operator is <:, which is used to compare types to see if
they are in a subtype relationship [31].

All the other operators added to Java and available in JML’s specification
expressions use a textual notation consisting of a backslash (\) followed by
an English word or phrase. For example, the logical quantifiers in JML are
written as \forall and \exists [2].

Besides these quantifiers, JML also has several other operators using this back-
slash syntax. One of the most important is \old(), which is used in method
postconditions to indicate an expression whose value is computed in the pre-
state of a method call. For example, \old(i-1) denotes the value of i-1

evaluated in the pre-state of a method call. This notation is borrowed from
the old operator in Eiffel. Other JML expressions using the backslash syntax
include \fresh(o), which says that o was not allocated in the pre-state of a
method call, but is allocated (and not null) in the post-state, and \result,
which denotes the normal result returned by a method.

The backslashes in the syntax of these operators serve a very important
purpose—they prevent the rest of the operator’s name from being interpreted
as a Java identifier. This allows JML to avoid reserving Java identifiers in
specification expressions. For example, result can be used as a program vari-
able and is distinguished from \result. This trick is useful in allowing JML to
specify arbitrary Java programs. Indeed, because a goal of JML is to document
existing code, it cannot add new reserved words to Java.

3 Background on JML

In this section we provide additional background on JML that will be useful
in understanding our solutions to the remaining problems.

3.1 Semantics of Specification Expressions

Just as JML adopts much of Java’s expression syntax, it attempts to keep
JML’s semantics similar to Java’s. In particular, the semantics of specification
expressions is a reference semantics. That is, when the name of a variable or
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field is used in an expression, it denotes either a primitive value (such as an
integer) or a reference to an object. References themselves are values in the
semantics, which allows one to directly express aliasing or the lack of it. For
example, the expression arg != fieldVal says that arg and fieldVal are
not aliased. Java also allows one to compare the states of objects using the
equals method. For example, in the postcondition of a clone method, one
might write the following to say that the result returned by clone is a newly
allocated object that has the same state as the receiver (this):

\fresh(\result) && this.equals(\result);

Note that the exact meaning of the equals method for a given type is left
to the designer of that type, as in Java. Thus, if one only knows that o is an
Object, it is hard to conclude much about x from o.equals(x).

Because JML uses this reference semantics, specifiers must show the same
care as Java programmers when choosing between the == and equals equality
tests. And like Eiffel, but unlike Larch-style interface specification languages,
JML does not need “state functions” to be applied to extract the value of
an expression from a reference. Values are implicitly extracted as needed by
methods and operators. Besides being easier for programmers, this lends some
succinctness to the notation.

Currently, JML adopts all of the Java semantics for integer arithmetic. Thus
types such as int use two’s complement arithmetic and are finite. Although
Java programmers are, in theory, aware of the nature of integer arithmetic,
JML’s adoption of Java’s semantics causes some misunderstandings; for ex-
ample, some published JML specifications are inconsistent because of this
semantics [60]. Chalin has suggested adding new primitive value types for in-
finite precision arithmetic to JML; in particular, he suggests a type \bigint
for infinite precision integers [61,60]. He is currently implementing and exper-
imenting with this idea.

3.2 Method and Type Specifications

To explain JML’s semantics for method specifications, we use the example
in Fig. 1. JML uses special comments, called annotations , to hold the spec-
ification of behavior; these are added to the interface information contained
in the Java code. A specifier writes these annotation comments by inserting
an at-sign (@) following the usual characters that signify the start of a com-
ment. In multi-line annotation comments, at-signs at the beginnings of lines
are ignored.

Fig. 1 starts with a “model import” directive, which says that JML will con-
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//@ model import org.jmlspecs.models.*;

public interface Stack {

//@ public model instance JMLObjectSequence absVal;

//@ public instance invariant absVal != null;

/*@ public normal_behavior

@ requires true;

@ assignable absVal;

@ ensures absVal.equals(\old(absVal.insertFront(x))); @*/

void push(Object x);

/*@ public normal_behavior

@ requires !absVal.isEmpty();

@ assignable absVal;

@ ensures absVal.equals(\old(absVal.trailer()))

@ && \result == \old(absVal.first());

@ also

@ public exceptional_behavior

@ requires absVal.isEmpty();

@ assignable \nothing;

@ signals (Exception e)

@ e instanceof IllegalStateException; @*/

Object pop();

//@ ensures \result <==> absVal.isEmpty();

/*@ pure @*/ boolean isEmpty();

}

Fig. 1. The specification and code for the interface Stack.

sider all types in the named package, org.jmlspecs.models, to be imported
for purposes of the specification. This allows the JML tools to find the type
JMLObjectSequence (see the third line) in that package.

The type JMLObjectSequence is used as the type of the model instance field,
named absVal. In this declaration, the model keyword says that the field is
not part of the Java code, but is used solely for purposes of specification. The
instance keyword says that the field is imagined, for purposes of specification,
to be a non-static field in every class that implements this interface. 3

Following the declaration of the two model instance fields is an invariant. It

3 Omitting instance makes fields static and final, which is Java’s default for fields
declared in interfaces.
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says that the field absVal is never null.

Following the invariant are the declarations and specifications of three meth-
ods. In JML, a method’s specifications are typically written, as they are in
Fig. 1, before the header of the method they specify. This makes the scope of
the formal parameters of a method a bit strange, because it extends backward
into the method’s specification. However, it works best with Java tools, which
expect comments related to a method, such as Javadoc comments, to precede
the method’s header.

Consider the specification of the first method, push. This shows the general
form of a “normal behavior” specification case. A specification case includes
a precondition, indicated by the keyword requires, and some other specifi-
cation clauses. A specification case is satisfied if, whenever the precondition
is satisfied, the other clauses are also satisfied. Additionally, in a normal be-
havior specification case, the method must not throw an exception when the
precondition is satisfied. The specification case given for push includes, besides
the requires clause, a frame axiom, introduced by the keyword assignable,
and a normal postcondition, following the keyword ensures.

As with specification languages in the Larch family, a precondition that is
just true can be omitted. In the Larch family, an omitted frame axiom means
“assignable \nothing;”, which is a very strong specification that says that
the method has no side effects. Following a suggestion of Erik Poll, we decided
that such a specification was too strong for a default. So in JML, an omitted
frame axiom allows assignment to all locations. This agrees with most of the
defaults for omitted clauses in JML, which impose no restrictions.

JML also allows specifiers to write “exceptional behavior” specification cases,
which say that, when the precondition is satisfied, the method must not return
normally but must instead throw an exception. An example appears in the
specification of the pop method. This specification has two specification cases
connected with also. The meaning of the also is that the method must satisfy
both of these specification cases [62,63]. Thus, when the value of the model
instance field absVal is not empty, a call to pop must return normally and must
satisfy the given ensures clause. But when the value of the model instance
field absVal is empty, a call to pop must throw an IllegalStateException.
This kind of case analysis can be desugared into a single specification case,
which can be given a semantics in the usual way [34,44,64,65].

The specification cases given for push and pop are heavyweight specification
cases [2, Section 1]. Such specification cases are useful when one wants to give a
relatively exact specification, especially for purposes of formal verification. For
runtime assertion checking or documentation, one may want to specify only
part of the behavior of a method. This can be done using JML’s lightweight
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specification cases, which are indicated by the absence of a behavior keyword
(like normal behavior). Fig. 1 gives an example of a lightweight specification
case in the specification of the method isEmpty.

4 Dealing with Undefinedness

As discussed in Section 1.3.2, a fundamental problem in using the underlying
language for specification expressions is dealing with expressions that have
undefined values. In Java, undefinedness in expressions is typically signaled
by the expression throwing an exception. For example, when one divides an
integer by 0, the expression throws an ArithmeticException. Exceptions may
also be thrown by methods called from within specification expressions.

Specification languages have adopted several different approaches to dealing
with undefinedness in expressions [66,67]. We wanted a semantics that would
not be surprising to either Java programmers or to those doing formal verifi-
cation. Typically, a Java programmer would try to write the specification in a
way that “protects” the meaning of the expression against any source of un-
definedness [68]. This can be accomplished by using the short-circuit boolean
operators; for example, a specifier might write denom > 0 && num/denom > 1

to be sure that the division would be defined whenever it was carried out.

However, we would like specifications to be meaningful even if they are not
protective. Hence, the semantics of JML does not rely on the programmer
writing protective specifications but, instead, ensures that every expression
has some value. To do this, we adopted the “underspecified total functions”
approach favored in the calculational style of formal methods [59,67]. That
is, an expression that would not have a value in Java is given an arbitrary,
but unspecified, value. For example, num/0 has some integer value, although
this approach does not say what the value is, and says only that it must be
uniformly substituted in any surrounding expression.

An advantage of this substitution approach is that it validates the rules for
standard logic. For example, in JML, E1 && E2 is equivalent to E2 && E1.
Consider what happens if E1 throws an exception; in that case, one may chose
some unspecified boolean value for E1, say b. This means that E1 && E2 equals
b && E2, which is equal to E2 && b, as can be seen by a simple case analysis on
E2’s value. The case where E2 throws an exception is similar. Furthermore, if
programmers write protective specifications, they will never be surprised by
the details of this semantics.

The JML assertion checking compiler takes advantage of the semantics of
undefinedness to attempt, as much as possible, to detect possible assertion
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violations [27]. That is, assertion checking attempts to use a value that will
make the overall assertion false, whenever the undefinedness of some subex-
pression allows it to do so. In this way, the assertion checker can both follow
the rules of standard logic and detect places where specifications are not suf-
ficiently protective. This is a good example of how JML caters to the needs of
both runtime assertion checking and formal verification.

5 Preventing Side Effects in Assertions

As discussed in Section 1.3.3, it is important to prevent side effects in asser-
tions, for both practical and theoretical reasons.

JML is designed to prevent side effects in assertions statically. It does this
using an effect-checking type system [69,70]. At the heart of the system is the
pure modifier. Only methods and constructors that are decared to be pure

can be used in assertions, and methods and constructors declared pure must
be side-effect free. In this section we first explain the details of this semantics,
and then discuss its ramifications.

5.1 JML’s Purity Restrictions

JML’s semantic restrictions on pure methods and constructors are as follows:

• A pure method implicitly has a specification that includes the following
specification case [2, Section 2.3.1]:

assignable \nothing;

This ensures that a correct implementation of the method has no side effects.
• “A pure constructor implicitly has a specification that only allows it to

assign to the instance fields of the class in which it appears” (including
inherited instance fields) [2, Section 2.3.1]. This ensures that, if the con-
structor is correctly implemented, then a new expression that calls it has no
side effects.

To explain the first restriction, it helps to first explain the semantics of JML’s
assignable clause [2, Section 2.1.3.1]. The assignable clause of a method m
describes the set of existing, non-local storage locations that may be assigned
by m’s execution. Local variables in a method, such as m’s formal parameters
and variables declared in m’s body, can be assigned regardless of m’s assignable
clause. Similarly, fields of objects allocated by m itself, and thus not existing in
m’s pre-state, can be freely assigned during the m’s execution regardless of its
assignable clause. Other locations, which exist in the pre-state, and which are
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not local to m, can only be assigned if they are mentioned in m’s assignable
clause (perhaps implicitly via a data group).

Therefore, the first restriction implies that a pure method may not perform
any input or output, nor may it assign to existing, non-local storage. Similarly,
by the second restriction, a pure constructor may not do any I/O and may
not assign to non-local storage other than the instance fields of the object
the constructor is initializing. A pure constructor is allowed to assign to the
instance fields of the object being constructed, because in an expression such
as new T (), the newly-created object does not exist in that expression’s pre-
state.

Note that, in JML, saying that a method may not assign to existing, non-
local storage means precisely that—even benevolent side effects are prohibited
[2, Section 2.1.3.1]. A benevolent side effect is a change in the internal state
of an existing object in a way that is not externally visible [4]. Prohibiting
even benevolent side effects is necessary for sound modular reasoning about
method implementations [71]. It is also a useful restriction for reasoning about
supertypes from their specifications [72] and for reasoning about concurrent
programs.

In the current verison of JML, the purity restrictions described above are
enforced conservatively. The most conservative aspect of purity checking is
that pure methods and pure constructors may only invoke other methods and
constructors that are pure. This is somewhat overly conservative, but is simple
to implement. A less conservative rule would allow assignments to fields in
objects that are created after the start of a pure method’s execution, as such
assignments are not covered by the assignable clause. In any case, the purity
of a method m can be checked modularly by using the assignable clauses of
the methods that m calls.

The type system of JML is an important advance over languages like Eif-
fel, which trust programmers to avoid side effects in assertions rather than
statically checking this property. However, as we will see in the following sub-
section, JML’s purity restrictions give rise to some practical problems.

Many of these practical problems arise from the the interaction between purity
checking and specification inheritance. Because a pure method has an implicit
specification that prohibits side effects during its execution, all methods and
constructors that override a pure method or constructor must also be pure.
That is, in JML, purity is inherited. This inheritance of purity is necessary to
make purity checking (and reasoning) modular in the presence of subtyping
and dynamic dispatch.

An important consequence of inheritance of purity is that a method cannot
be correctly specified as pure if any overriding method has side effects. In
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particular, a method in Object can be specified as pure only if every override
of that method, in every Java class, obeys JML’s purity restrictions.

5.2 Practical Problems with JML’s Purity Restrictions

An initial practical problem is how to decide which methods in Java’s libraries
should be specified as pure. One way to start to answer this question is to use
a static analysis to conservatively estimate which methods in Java’s libraries
have side effects. A conservative analysis could count a method as having side
effects if it assigns to non-local storage or calls native methods (which may do
I/O), either directly or indirectly. All other methods can safely be specified as
pure, provided they are not overridden by methods that the analysis says have
side effects. Researchers from Purdue have provided a list of such methods to
us, using their tools from the Open Virtual Machine project. 4 We plan to
integrate this technology into the JML tools eventually.

Declaring a method to be pure entails a very strong specification, namely
that the method and all possible overriding methods have no side effects.
Thus, finding that a method, and all known methods that override it, obey
JML’s purity restrictions is not the same as deciding that the method should
be specified as pure. Such a decision affects not just all existing overrides of
the method, but all future implementations and overrides. How is one to make
such a decision?

This problem is particularly vexing because there are many methods that are
intuitively side-effect free, but that do not obey JML’s purity restrictions.
Methods with benevolent side effects are common examples. Two examples
from the protocol of Object will illustrate the importance of this problem.

First, consider computing a hash code for an instance of a class. Because this
may be computationally costly, an implementation may desire to compute the
hash code the first time it is asked for and then cache the result in a private
field of the object. When the hash code is requested on subsequent occasions,
the cached result is returned without further computation. For example, this is
done in the hashCode method of Java’s String class. However, in JML, storing
the computed hash code into the cache is considered to be a side effect. So
String’s hashCode method cannot be specified as pure.

Second, consider computing object equality. In some implementations, an ob-
ject’s fields might be lazily initialized or computed only on first access. If the
equals method happens to be the first such method to be called on such an ob-
ject, it will trigger the delayed computation. We found such an example in our

4 See http://www.ovmj.org/.
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work on the MultiJava compiler [73,74]; in this compiler, the class CClassType
has such delayed computations, and its override of Object’s equals method
can trigger a previously delayed computation with side effects. It seems very
difficult to rewrite this method to be side-effect free, because to do so one
would probably need to change the compiler’s architecture. (Similar kinds of
lazy initialization of fields occur in implementations of the Singleton pattern,
although these usually do not affect the equals method.)

We have shown two cases where methods in the protocol of Object are overrid-
den by methods that cannot be pure. By purity and specification inheritance,
these examples imply that neither hashCode nor equals can be specified as
pure in Object. Object is typically used in Java as the type of the elements
in a collection. Hence, in the specification of a collection type, such as a hash
table, one cannot use the hashCode or equals methods on elements. Without
changes, this would make JML unsuitable for specifying collection types.

(This problem is mostly a problem for collection types, because one can specify
many subclasses of Object with pure hashCode and equals methods. Spec-
ifications operating on instances of such subclasses can use these methods
without violating JML’s type system.)

5.3 Solving the Problems

The desire to use intuitively side-effect free methods in specifications, even
if they are not pure according to JML’s semantics, is strong enough that we
considered changing the semantics of the assignable clause in order to allow
benevolent side effects. However, we do not know how to do that and still
retain sound modular reasoning [71]. In any case, the use of such methods
in runtime assertion checking would still be problematic because of the side
effects they might cause. In addition, we would like to prevent problems when
a programmer wrongly believes that side effects are benevolent; it is not clear
whether an automatic static analysis could prevent such problems, and even
if so, whether such a tool could be modular.

Thus far, the only viable solution we have identified is to refactor specifications
by adding pure model (i.e., specification-only) methods that are to be used
in specifications in place of program methods that cannot be pure. That is,
whenever one has an intuitively side-effect free program method, m, that is
not pure according to JML’s semantics, one creates a pure model method m′,
which returns the same result as m but without its side effects. Then one
replaces calls to m by calls to m′ in assertions.

We are currently experimenting with this solution. The most important part of
this experiment is to replace uses of Object’s equals method, which cannot be

16



/*@ public normal_behavior

@ assignable objectState;

@ ensures \result <==> this.isEqualTo(obj);

@*/

public boolean equals(Object obj);

/*@ public normal_behavior

@ requires obj != null;

@ assignable \nothing;

@ ensures (* \result is true iff obj is equal to this *);

@ also

@ public normal_behavior

@ requires obj != null && \typeof(this) == \type(Object);

@ assignable \nothing;

@ ensures \result <==> this == obj;

@ also

@ public normal_behavior

@ requires obj == null;

@ assignable \nothing;

@ ensures \result <==> false;

public pure model boolean isEqualTo(Object obj) {

return this == obj;

}

@*/

Fig. 2. The refactored specification for Object’s equals method and the pure model
method isEqualTo. The text between (* and *) in the first specification case of
isEqualTo’s specification is an “informal description”, which formally is equivalent
to writing true [44].

pure, with calls to a new pure model method in Object, called isEqualTo. The
specifications of these methods are shown in Fig. 2. The assignable clause
in the specification of the equals method permits benevolent side effects; it
is also specified to return the same result as would a call to isEqualTo. Thus,
whenever someone overrides equals, they should also override the isEqualTo
method. When an override of equals is specified as pure, then an override
of isEqualTo in the same class can be specified in terms of this pure equals

method, and the implementation of the model isEqualTo method can simply
call equals as well. However, an implementation of equals can never call
isEqualTo, because program code cannot call model methods (since model
methods can only be used in specifications). Therefore, to avoid code duplica-
tion when equals is not declared to be pure but the two methods share some
common implementation code, one can introduce a (non-model) pure, private
method that both equals and isEqualTo can call.
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We have also applied this refactoring to all the collection classes in java.util

(and in other packages) that we had previously specified, in order to check
that the solution is viable. So far the results seem satisfactory. However, as
of March 2004, this restructuring is not part of the JML release, because the
JML tools are not yet able to handle some of the details of this approach.
In particular, the runtime assertion checker is not yet able to compile the
model methods added to Object without having all of Object’s source code
available. (And we cannot legally ship Sun’s source code for Object in the
JML release.) However, we are working on solutions to this problem that will
allow us to obtain more experience with this approach and to do more case
studies.

5.4 Future Work on Synchronized Methods and Purity

JML currently permits synchronized methods to be declared pure if they meet
all the criteria described in Section 5.1. Given that obtaining a lock is a side
effect that can affect control flow in a program, does allowing synchronized
methods to be pure violate the intent of JML’s purity restrictions? That is
the question we investigate in this section.

5.4.1 Background

Java has language-level support for mutual exclusion [75, §10.3]. A method
may be declared synchronized, which means that the thread making a call
to that method must first obtain a lock on the method’s receiver object. The
receiver object for a method call o.m(e) is o, and for a static method call of
the form C.g(e) is the class object for the class in which the method is located,
namely C.class. A thread that is attempting to obtain a lock will wait until
no other thread holds it; however, if the thread already holds the lock, it will
proceed without interruption and without changing any storage. That is, if
the thread holds the lock already, it can enter a synchronized method without
any side effects.

Java has various ways to test whether a thread holds a lock. The most ex-
plicit of these is the side-effect free method Thread.holdsLock. Thus even a
sequential program can observe side effects from locking.

5.4.2 The Problem

A synchronized method is not, in general, side-effect free. The locking used in
synchronization is a modification of the state of a program execution, and can
alter control flow in concurrently executing threads. Thus it would seem that
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synchronized methods violate the intent of JML’s purity restrictions, because
calling them can, in general, cause side effects.

On the other hand, if we followed this observation to its logical conclusion and
prohibited synchronized methods from being declared to be pure, JML would
have several problems. The first problem is that prohibiting pure synchro-
nized methods would be inconvenient, violating the ease-of-use requirement.
For example, the class java.util.Vector is commonly used and has many
synchronized methods that could otherwise be pure, such as firstElement

and elementAt; such methods, or similar model methods, are necessary to
access the state of a vector in assertions. A more important problem is that
during runtime assertion checking, assertions need to be evaluated in a thread-
consistent state. In a multithreaded program, an object that is shared by sev-
eral threads can only be guaranteed to be in a consistent state when it is
locked. If assertions, such as pre- and postconditions and the methods called
within them, are evaluated without locking the shared objects involved, then
other threads may modify the internal state of the object during assertion
evaluation, leading to nonsensical or inconsistent results.

Hence we have a dilemma: obtaining a lock is a side effect, but methods called
during assertion checking must, in general, be guarded by a lock if they are
to return meaningful and consistent results.

5.4.3 Possible Approaches

The only way out of the dilemma appears to be to consider special cases
in which either obtaining a lock does not cause side effects or in which the
side effects due to locking cannot be observed. The key observation is that a
thread that calls a synchronized method does not obtain locks it already holds.
That is, a synchronized method will act in a pure manner if it is invoked by
a thread that already owns a lock on the method’s receiver. In particular,
no side effects occur during a call, o.m(e) to a pure synchronized method
that originates from within another synchronized method whose receiver is o,
because the other method already holds o’s lock. It follows that synchronized
methods will not have side effects if they are called during assertion checking
on behalf of another synchronized method on the same object. This condition
could be enforced statically, and might be useful for model methods, which
cannot be called directly by Java program methods.

However, checking whether a thread holds a lock is not, in general, statically
decidable. So one possible semantics for JML is to require that all pure syn-
chronized methods (implicitly) satisfy the following specification:

requires Thread.holdsLock(this);
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The runtime assertion checker could check this precondition and raise an asser-
tion violation error if the calling thread does not hold the receiver’s lock. This
check could be done before the calling thread attempt to obtain the receiver’s
lock, for example by calling the synchronized method from a non-synchronized
method that performs this check first. This approach would guarantee that the
synchronized method would not have the side effect of obtaining the receiver’s
lock.

Unfortunately, the above precondition is still too strong for concurrent data
abstractions, because having the receiver’s lock does not, in general, imply
having the locks of its component objects that might be exposed to outside
inspection or manipulation. We need a way to state and enforce constraints
on aliasing. For this, we are considering a variant of the Universe type system
[76,77], which would allow us to enforce such alias constraints statically in
JML. The idea is to statically guarantee that all paths to an object pass
through a single “owner” object. With this kind of type system, we could
weaken the above precondition to state that the current thread must either
hold the lock on the receiver’s owner object, or on the object itself.

6 Mathematical Libraries

As described in Section 1.3.4, we need to provide a library of mathematical
concepts with JML in a way that does not overwhelm programmers, and yet
is useful for formal verification.

6.1 Hiding the Mathematics

It is sometimes convenient to use mathematical concepts such as sets and
sequences in specification, particularly for collection classes [78,79,11]. For ex-
ample, the specification of Stack in Fig. 1 uses the type JMLObjectSequence,
which is part of JML’s org.jmlspecs.models package. This package contains
types that are intended for such mathematical modeling. Besides sequences,
these include sets, bags, relations, and maps, and a few other convenience
types.

Most types in the org.jmlspecs.models package have only pure methods and
constructors. 5 For example, JMLObjectSequence’s insertFront method re-

5 The org.jmlspecs.models package does have some types that have non-pure
methods. These are various kinds of iterators and enumerators. The methods of
these iterators and enumerators that have side effects cannot be used in specification
expressions.
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turns a sequence object that is like the receiver, but with its argument placed
at the front; the receiver is not changed in any way. JMLObjectSequence’s
trailer method similarly returns a sequence containing all but the first ele-
ment of the receiver, without changing the receiver. Because such methods are
pure, they can be used during runtime assertion checking without changing
the underlying computation.

JML gains two advantages from having these mathematical modeling types in
a Java package, as opposed to having them be purely mathematical concepts.
First, these types all have Java implementations and thus can be used during
runtime assertion checking. Second, using these types in assertions avoids the
introduction of special mathematical notation; instead, normal Java expres-
sions (method calls) are used to do things like concatenating sequences or
intersecting sets. This is an advantage for our main audience, which consists
of programmers and not mathematicians.

6.2 Use by Theorem Provers

The second part of the mathematical libraries problem described in Sec-
tion 1.3.4 is that the library of mathematical modeling types should be useful
for formal verification. The types in the org.jmlspecs.models package are
intended to correspond (loosely) to the libraries of mathematical concepts
found in theorem provers, such as PVS. As we gain experience, we can add
additional methods to these types to improve their correspondence to these
mathematical concepts. It is also possible to add new packages of such types
tailored to specific theorem provers or to other notations, such as OCL.

When translating specification expressions into theorem prover input, the
LOOP tool currently treats all methods in the same way — it does not make
a special case for pure methods in the org.jmlspecs.models package. This
makes the resulting proof obligations more complex than is desirable. Since
the types in the models package are known, one should be able, as a special
case, to replace the general semantics of such a method call with a call to some
specific function from the theorem prover’s library of mathematical concepts.
To facilitate this, it may be that these model types should all be declared to
be final, which is currently not the case.

7 Related Work

We have already discussed how JML differs from conventional formal specifi-
cation languages, such as Z [17–19], VDM [20,21,5,22], the Larch family [8–11],
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and RESOLVE [12,13]. To summarize, the main difference is that JML’s spec-
ification expressions are based on a subset of the Java programming language,
a design that is more congenial to Java programmers.

The Alloy Annotation Language (AAL) offers a syntax similar to JML for
annotating Java programs [80]. AAL supports extensive compile-time checking
based on static analysis techniques. Unlike similar static analysis tools such as
ESC/Java [81], AAL also supports method calls and relational expressions in
assertions. However, AAL’s assertion language is based on a simple first-order
logic with relational operators [82] and not on a subset of Java expressions.
We believe that a Java-based syntax is more likely to gain acceptance among
Java programmers. However, JML could adopt some of AAL’s features for
specifying sets of objects using regular expressions. These would be helpful
in using JML’s frame axioms, where they would allow JML to more precisely
describe locations that can be assigned to in the method. (Another option that
would have similar benefits would be to use the approach taken in DemeterJ
[83].)

We have also discussed how JML differs from design by contract languages,
such as Eiffel [14,15], and tools, such as APP [16]. Summarizing, JML provides
better support for more exact specifications and formal verification by

• extending the set of specification expressions with more expressive mathe-
matical constructs, such as quantifiers,

• ensuring that specification expressions do not contain side effects, and
• providing a library of types corresponding to mathematical concepts.

JML’s specification-only (model) declarations and frame axioms also con-
tribute to its ability to specify types more precisely than is easily done with
design by contract tools.

We know of several other design by contract tools for Java [84–89]. The ap-
proaches vary from a simple assertion mechanism similar to the assert macros
of C and C++ to full-fledged contract enforcement capabilities. Jass [84], iCon-
tract [88], and JContract [89] focus on the practical use of design by contract
in Java. Handshake and jContractor focus on implementation techniques such
as library-based on-the-fly instrumentation of contracts [85,87]. Contract Java
focuses on properly blaming contract violations [86,90]. These notations and
tools suffer from the same problems as Eiffel. That is, none of them guarantee
the lack of side effects in assertions, handle undefinedness in a way that would
facilitate formal verification and reasoning, support more expressive math-
ematical notations such as quantifiers, or provide a set of immutable types
designed for use in specifications. In sum, they all focus on runtime checking,
and thus it is difficult to write exact specifications for formal verification and
reasoning.
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8 Conclusion

JML synthesizes the best from the worlds of design by contract and more
mathematical specification languages. Because of its expressive mathematical
notations, its specification-only (model) declarations, and library of mathe-
matical modeling types, one can more easily write more exact specifications
in JML than in a design by contract language, such as Eiffel. These more
detailed specifications, along with JML’s purity checking, allow JML to be
useful for formal verification. Thus, JML’s synthesis of features allows it to
serve many roles in the Java formal methods community.

Our experience so far is that this approach has had a modest impact. Release
4.1 of JML has been downloaded over 400 times. JML has been used in at
least 5 universities for teaching some aspects of formal methods. It is used
somewhat extensively in the Java Smart Card industry and has been used in
at least one company outside of that industry (Fulcrum).

In the future, we would like to extend the range of tools that JML supports to
include tools for model checking and specification of concurrent Java programs
[91]. We invite others to join us in this effort to furnish Java programmers with
a single notation that can be used by many tools.
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