
MiniMAO: Investigating the Semantics of Proceed ∗

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science

Iowa State University
229 Atanasoff Hall

Ames, Iowa 50010-1041

{cclifton,leavens}@cs.iastate.edu

ABSTRACT
This paper describes the semantics of MiniMAO1, a core aspect-
oriented calculus. Unlike previous aspect-oriented calculi, it allows
around advice to change the target object of an advised operation
before proceeding. MiniMAO1 accurately models the ways As-
pectJ allows changing the target object, e.g., atcall join points.
Practical uses for changing the target object using advice include
proxies and other wrapper objects.

In addition to accurate modeling of bindings foraround advice,
MiniMAO 1 has several other features that make it suitable for the
study of aspect-oriented mechanisms, such as those found in As-
pectJ. Like AspectJ, the calculus consists of an imperative, object-
oriented base language plus aspect-oriented extensions. MiniMAO1
has a sound static type system, facilitated by a slightly different
form of proceed than in AspectJ.

1. INTRODUCTION
This paper describesMiniMAO1, a core aspect-oriented calcu-

lus. MiniMAO1 is designed to explore two key issues in reasoning
about operations in aspect-oriented programs:

— when advice may change the target object of the operation,
possibly affecting dynamic method selection, and

— when advice may change or capture the arguments to, or re-
sults from, the operation.

MiniMAO 1 is sufficiently expressive to encode key aspect-oriented
idioms. But by minimizing the set of features, we arrive at a core
language that is sufficiently small as to make tractable formal proofs
of type soundness and—in planned extensions—proofs of desired
modularity properties and verification conditions.

In this paper we describe the dynamic semantics of MiniMAO1
and an interesting portion of its type system. We also state its
soundness theorem. Because of space limitations, we refer inter-
ested readers to a companion technical report [4] for details that
we omit here. We leave the study of reasoning issues to future
work. For clarity, we begin with a core object-oriented calculus
with classes. We then extend this object-oriented calculus with as-
pects and advice binding.

2. THE BASE LANGUAGE: MiniMAO 0

In this section we introduceMiniMAO0, a core imperative object-
oriented calculus with classes, derived from Classic Java [8]. Fol-
lowing the lightweight philosophy of Featherweight Java [9], we

∗Supported by NSF grants CCF-0428078 and CCF-0429567.

FOAL ’05 Chicago, Illinois USA
Copyright c© 2005, Curtis Clifton and Gary T. Leavens.

P :: = decl∗ e

decl:: = class c extends c { field∗ meth∗ }
field :: = t f

meth:: = t m(form∗) { e }
form :: = t var, wherevar 6= this

e :: = new c() | var | null | e.m(e∗) |
e. f | e. f = e | cast t e | e; e

c,d ∈ C , the set of a class names

t,s,u∈T , the set of types

f ∈F , the set of field names

m∈M , the set of method names

var∈ {this}∪V , whereV is the set of variable names

Figure 1: Syntax of MiniMAO 0

eliminate interfaces, super calls, and method overloading. We drop
let expressions and instead usee1; e2 to sequentially evaluatee1
and thene2. We adopt Featherweight Java’s technique of treating
the current program and its declarations as global constants. This
avoids burdening the formal semantics with excess notation.

To allow later modeling of method call and execution join points,
we also separate call and execution in the semantics.

2.1 Syntax of MiniMAO 0

The syntax for MiniMAO0 is given in Figure 1. A program con-
sists of a sequence of declarations followed by a single expression.
Running a program consists of evaluating this expression.

In MiniMAO 0 the declarations are all of classes. We omit access
modifiers, which would only add gratuitous complexity; hence all
methods and fields are globally accessible. MiniMAO0 also omits
constructors. All objects are created with their fields set tonull.

The set of types is denoted byT . MiniMAO 0 includes just one
built-in type,Object, the top of the class hierarchy.Object con-
tains no fields or methods. For MiniMAO0, T = C , the set of valid
class names.C is left unspecified, but we use Java identifier con-
ventions in examples. We follow the same convention forF , M ,
andV .

Most expressions in MiniMAO0 have a meaning like that in Java,
but there are some differences. The expressionnew C() creates an
instance of the class namedC, setting all of its fields to the default
null value. For syntactic clarity, we follow Classic Java in using a
non-Java syntax,cast t e, to represent the Java cast(t) e.

1

2.2 Operational Semantics of MiniMAO0

We describe the dynamic semantics of MiniMAO0 using a struc-
tured operational semantics [7, 13, 16]. The semantics is quite sim-
ilar to that for Classic Java. There are two main differences: a
stack (used for aspect binding in MiniMAO1) and the separation of
method call and execution into separate primitive operations.

For the operational semantics we add two expressions that do not
appear in the user-visible syntax.

e :: = . . . | loc | (l (v. . .))

l :: = fun m〈var∗〉.e: τ

τ :: = t× . . .× t → t

v :: = loc | null
loc∈L , the set of store locations

One can think of locations,loc∈L , as addresses of object records
in a global heap, but we just require thatL is some countable set.
The application expression form is used to model method execu-
tion independently from method calls. In these expressions,l is a
(non-first-class)fun term that represents a method and(v. . .) is
an operand tuple that represents the actual arguments. The appli-
cation expression thus records information from method dispatch,
but before execution of the method body. Thefun term carries type
information—a function type,τ. This type information is not used
in evaluation rules, but is helpful in the subject-reduction proof.
The use of the application expression form in the operational se-
mantics is described in more detail below.

As is typical in an operational semantics, we consider a subset of
the expressions to be irreducible values. The values in MiniMAO0
are the locations andnull. Evaluation of a well-typed MiniMAO0
program will produce either a value or an exception.

The evaluation context rules, denoted byE, serve as implicit con-
gruence rules and define a left-to-right evaluation order:

E :: =− | E. f | E. f = e | v. f = E | cast t E | E; e |
E.m(e. . .) | v.m(v. . .Ee. . .) | (l (v. . .Ee. . .))

The evaluation context for the application form only recurses on the
arguments and not on the method body expression in thefun term
of the form. Evaluation of the method body does not take place
until the substitution of actuals for formals has been done by the
appropriate evaluation rule.

The relation,↪→, describes evaluation steps:

↪→ :E ×Stack×Store→ (E ∪Excep)×Stack×Store

This relation takes an expressione∈ E , a stack, and a store and
maps this to a new expression or an exception, plus a new stack
and a new store. Exceptions are elements of

Excep= {NullPointerException,ClassCastException}.

For MiniMAO0, the evaluation relation on the stack is identity, so
we leave the setStackundefined for now. The setStorecontains
maps from locations to object records, where an object record has
the form[t �{ f 7→ v· f ∈ dom(fieldsOf(t))}].

Although suppressed in the evaluation relation, the declarations
of the program are used to populate a globalclass table, CT, that
maps class names to their declarations.

Evaluation of a MiniMAO0 program begins with the triple con-
sisting of the main expression of the program, a stack, and an empty
store. The↪→ relation is applied repeatedly until the resulting triple
is not in the domain of the relation. This terminating condition can
arise because the resulting triple contains either an irreducible value
or an exception. If the resulting triple contains an irreducible value,

then that value, interpreted in the resulting store, is the result of the
program. There is no guarantee that this evaluation terminates.

The ↪→ relation is defined by a set of mutually disjoint rules.
Except for the CALL and EXEC, these rules are standard and are
omitted here. The CALL rule is:

〈E[loc.m(v1, . . . ,vn)],J,S〉 CALL

↪→ 〈E[(l (loc,v1, . . . ,vn))],J,S〉
whereS(loc) = [t �F] andmethodBody(t,m) = l

This says that a method call expression, where the target is a loca-
tion bound in the store, is evaluated by looking up the body of the
method and constructing an application form recording the formal
parameters, method body, and actual arguments. The interesting
part in the definition of the method lookup function is:

CT(c) = class c extends d { field∗ meth1 . . .methp }
∃i ∈ {1..p} ·methi = t m(t1 var1, . . . , tn varn) { e }

τ = c× t1× . . .× tn → t

methodBody(c,m) = fun m〈this,var1, . . . ,varn〉.e: τ

Another part recursively searches in superclasses when a method is
not found. This models inheritance of methods.

The application form produced by the CALL rule is evaluated by
the EXEC rule:

〈E[(fun m〈var0, . . . ,varn〉.e: τ (v0, . . . ,vn))],J,S〉 EXEC

↪→ 〈E[e{|v0/var0, . . . ,vn/varn|}],J,S〉

This rule replacesthis and the formal parameters in the body with
the appropriate values. (The notatione{|e′/var|} denotes the stan-
dard capture-avoiding substitution ofe′ for var in e.)

An example showing the CALL and EXEC rules is given in Sec-
tion 3.3.6. The companion technical report contains the complete
operational semantics. It also contains a separate static semantics
and soundness theorem for MiniMAO0.

3. MiniMAO 1: ADDING ASPECTS
In this section we add advice binding to MiniMAO0, producing

the aspect-oriented core calculus MiniMAO1. Continuing with our
minimalist philosophy, the join point model of MiniMAO1 is quite
simple. The model only includescall andexecution join points,
the parameter binding formsthis, target, andargs, and the op-
erators for pointcut union, intersection, and negation. We inten-
sionally omit temporal join points, such ascflow; the techniques
for dealing semantically with such join points are well understood
[15], and such temporal join points do not substantially affect the
typing rules for aspects.

MiniMAO 1 accurately models AspectJ’s semantics for around
advice, in that it allows advice to change the target object of a
method call or execution before proceeding with the operation.
Moreover, as in AspectJ, changing the target object at a call join
point affects method selection for the call, but changing the target
object at an execution join point merely changes the self object of
the already selected method. Changing the target object is useful
for such idioms as introducing proxy objects. MiniMAO1 does de-
part from AspectJ’s semantics for around advice in two ways: it
does not allow changing thethis (i.e., the caller) object at acall
join point and it uses a different form ofproceed, which matches
the shape of the advised code rather than the surrounding advice.
These differences are discussed more below.

3.1 Related Work
No previous work deals with the actual AspectJ semantics of ar-

gument binding forproceed expressions and an object-oriented
base language. Wand et al. [15] bind all advice parameters at the

2

join point instead of at each subsequentproceed expression. Their
calculus also is not object-oriented and so does not deal with the ef-
fects on method selection of changing the target object. Douence
et al. [6] do not formalize advice parameter binding and do not in-
cludeproceed in their language. Jagadeesan et al. [10] only con-
sider primitivecall andexecution pointcut descriptors, omitting
pointcut operators (like union and intersection) and the ability of
advice to change the target object of an invocation. Masuhara and
Kiczales [12] do not include around advice in their Scheme-based
model for an AspectJ-like language. They do sketch how these
features could be added, but do not address the effect on method
selection of changing the target object. Aldrich [2] presents a sys-
tem called “open modules” that includes advice and dynamic join
points with a module system that can restrict the set of control flow
points to which advice may be attached. The system is not object-
oriented, so it does not address the issue of changing the target of
a method call, and it does not include state. Dantas and Walker
[5] present a simple object-based calculus for “harmless advice”.
They use a type system with “protection levels” to keep aspects
from altering the data of the base program. In keeping with this
non-interference property, they do not allow advice to change val-
ues when proceeding to the base program. Bruns et al. [3] describe
µABC, a name-based calculus in which aspects are the primitive
computational entity. Their calculus does not include state. While
their calculus does allow modeling of a form ofproceed, It is dif-
ficult to see how it could be used to study the effects of advice on
method selection.

Walker et al. [14] use an innovative technique of translating an
aspect-oriented language into a labeled core language, where the
labels serve as both advice binding sites and targets forgoto ex-
pressions, where they are used to translate around advice that does
not proceed. While their work does consider around advice and
proceed in an object-oriented setting—the object calculus of Abadi
and Cardelli [1]—it does not consider changing any arguments to
the advised code, let alone the effects on method selection of chang-
ing the target object of an invocation.

Our operational semantics for MiniMAO1 draws heavily on the
insight of Walker et al. that labeling primitive operations is a use-
ful technique for modeling aspect-oriented languages. However, to
handle the run-time changing of the target object and arguments
when proceeding from advice, we replace their simple labels with
more expressive join point abstractions. Also, rather than intro-
duce these join point abstractions through a static translation from
an aspect-oriented language to a core language, we generate them
dynamically in the operational semantics. The extra data needed
for the join point abstractions (versus the simple static labels) is
more readily obtained when they are generated dynamically. (This
dynamic generation is also adopted by Dantas and Walker.) Also,
directly typing the aspect-oriented language, instead of just show-
ing a type-safe translation to the labeled core language, seems to
more clearly illustrate the issues in typing advice, though this is a
matter of taste.

3.2 Syntax of MiniMAO 1

Figure 2 gives the additional syntax for MiniMAO1. To the dec-
larations of MiniMAO0 we add aspects. For a MiniMAO1 program
the set of types,T , is C ∪A , whereA is the set of aspect names.
An aspect declaration includes a sequence of field declarations and
a sequence of advice declarations.

We only includearound advice in MiniMAO1. Operationally,
around advice can be used to model bothbefore andafter ad-
vice. (As noted by Jagadeesan et al. [11], the typing rules necessary
for soundness may be less restrictive forbefore or after advice.)

decl:: = . . . | aspect a { field∗ adv∗ }
adv:: = t around(form∗) : pcd { e }
pcd:: = call(pat) | execution(pat) |

this(form) | target(form) | args(form∗) |
pcd&& pcd | !pcd | pcd|| pcd

pat :: = t idPat(..)

e :: = . . . | e.proceed(e∗)

a∈A , the set of aspect names

idPat∈I , the set of identifier patterns

Figure 2: Syntax Extensions for MiniMAO1

An advice declaration in MiniMAO1 consists of a return type,
followed by the keywordaround and a sequence of formal param-
eters. The pointcut descriptor that follows specifies the set of join
points—thepointcut—where the advice should be executed. Ajoin
point is any point in the control flow of a program where advice
may be triggered. The pointcut descriptor for a piece of advice also
specifies how the formal parameters of the advice are to be bound
to the information available at a join point. The final part of an
advice declaration is an expression that is the advice body.

MiniMAO 1 includes a limited vocabulary for pointcut descrip-
tors. Thecall pointcut descriptor matches the invocation of a
method whose signature matches the given pattern. Theexecution

pointcut descriptor is similar, but matches the join point corre-
sponding to a method execution. In both of these, we restrict method
patterns to a concrete return type plus an identifier pattern that is
matched against the name of the called method. We choose not
to include matching against target or parameter types here because
that is essentially syntactic sugar for thetarget andargs pointcut
descriptors.

We leave the setI of identifier patterns underspecified. Gener-
ally, one can think ofI as a class of regular expression languages
such that all members ofM are elements of a language inI .

Thethis, target, andargs pointcut descriptors correspond to
the parameter-binding forms of these descriptors in AspectJ; they
bind the named formal parameters to the corresponding informa-
tion from the join point. To simplify the operational semantics, the
syntax requires a type and a formal parameter. For example, where
one could writethis(n) in AspectJ, one must writethis(Number
n) in MiniMAO (where Number is the type of the formal parame-
ter n in the advice declaration). While this type could be inferred,
including it in the syntax clarifies the formalism. Another sim-
plification versus AspectJ is that theargs pointcut descriptor in
MiniMAO 1 binds all arguments available at the join point; such
bindings do not allow matching of methods with differing num-
bers of arguments, unlike those in AspectJ. MiniMAO1 does not
include any wildcard or subtype matching forthis, target, or
args pointcut descriptors.

The final three pointcut descriptor forms represent pointcut nega-
tion (!pcd), union (pcd || pcd), and intersection (pcd && pcd).
These last two are “short circuiting”; for example, ifpcd1 in the
form pcd1 || pcd2 matches a join point, then the bindings defined
by pcd1 are used andpcd2 is ignored.

MiniMAO 1 also includesproceed expressions, which are only
valid within advice. An expression such ase0.proceed(e1, . . . ,en)
takes a target,e0, and sequence of arguments,e1, . . . ,en, and causes
execution to continue with the code at the advised join point—

3

J :: = j +J | •
j :: = (|k,vopt,mopt, lopt,τopt|)
k :: = call | exec | this

vopt :: = v | −
mopt :: = m | −
lopt :: = l | −
τopt :: = τ | −

Figure 3: The Join Point Stack

either the original method or another piece of advice that applies
to the same method. As noted above, theproceed expression in
MiniMAO 1 differs from AspectJ. In MiniMAO1, an expression of
the forme0.proceed(e1, . . . ,en) must be such that the type of the
target,e0, and the number and types of the arguments,e1, . . . ,en,
must match those of theadvised methods. In AspectJ, the argu-
ments to proceed must match the formal parameters of the sur-
roundingadvice. This design decision matches our intuition for
how proceed should work; it has little effect on expressiveness
in a language with type-safe around advice. Our design also pre-
cludes changing thethis object atcall join points. Such changes
would only be visible from other aspects, not the base program.
Precluding these changes eliminates some possibilities for aspect
interference, a useful property for our work on aspect-oriented rea-
soning. We are not aware of any use cases demonstrating a need to
allow changing thethis object.

3.3 Operational Semantics of MiniMAO1

This section gives the changes and additions to the operational
semantics for MiniMAO1. We describe the stack, new expression
forms introduced for the operational semantics, the new evaluation
rules, pointcut descriptor matching, and give evaluation examples.

3.3.1 The Join Point Stack
The stack in MiniMAO1 is a list ofjoin point abstractions, which

are five-tuples surrounded by half-moon brackets,(|. . .|), as shown
in Figure 3. A join point abstraction records all the information in
a join point that is needed for advice matching and advice param-
eter bindings, together referred to asadvice binding. A join point
abstraction also includes all the information necessary to proceed
from advice to the original code that triggered the join point. A join
point abstraction consists of the following parts (most of which are
optional and are replaced with “−” when omitted):

— a join point kind,k, indicating the primitive operation of the
join point, orthis to record the self object at method or ad-
vice execution (for binding thethis pointcut descriptor);

— an optional value indicating the self object at the join point;

— an optional name indicating the method called or executed at
the join point;

— an optionalfun term recording the body of the method to be
executed at an execution join point; and

— an optional a function type indicating the type of the code
under the join point (or, equivalently, the type of aproceed
expression in any advice that binds to the join point).

The codeundera join point is the program code that would ex-
ecute at that join point if no advice matched the join point. For

e :: = . . . | joinpt j(e∗) | under e | chain B̄, j(e∗)

B̄ :: = B+ B̄ | •
B :: = dbb, loc,e,τ,τce
b :: = 〈α,β ,β ∗〉
α :: = var 7→ loc | −
β :: = var | −
b∈B, the set of advice parameter bindings

Figure 4: Expression Forms Added for the Semantics

example, the code under a method execution join point is the body
of the method. The function type includes the type of the target
object as the first argument type.

3.3.2 New Expression Forms
The operational semantics relies on three extra expression forms,

shown in Figure 4. The first,joinpt, reifies join points of a pro-
gram evaluation into the expression syntax. Ajoinpt expression
consists of a join point abstraction followed by a sequence of actual
arguments to the code under the join point.

The second expression form that we add for the operational se-
mantics isunder. An under expression serves as a marker that
the nested expression is executing under a join point; that is, a join
point abstraction was pushed onto the stack before the nested ex-
pression was added to the evaluation context. When the nested
expression has been evaluated to a value, then the corresponding
join point abstraction can be popped from the stack.

The final additional expression form ischain. A chain expres-
sion records a list,̄B, of all the advice that matches at a join point,
along with the join point abstraction and the original arguments to
the code under the join point.

The advice list of achain expression consists ofbody tuples,
one per matching piece of advice. For visual clarity, “snake-like”
brackets,db. . .ce, surround each body tuple. A body tuple is com-
prised of two parts: operational information and type information.
The operational information includes:b, a parameter binding term
described below,loc, a location, ande, an expression. The loca-
tion is the self object; it is substituted forthis when evaluating the
advice body. The expression is the advice body.

The binding term, b, describes how the values of actual argu-
ments should be substituted for formals in the advice body. This
substitution is somewhat complex to account for the special bind-
ing of thethis pointcut descriptor, which takes its data from the
original join point, and thetarget andargs pointcut descriptors,
which take their data from the invocation orproceed expression
immediately preceding the evaluation of the advice body.

Structurally, a binding term consists of a variable-location pair,
var 7→ loc, which is used for anythis pointcut descriptors, fol-
lowed by a non-empty sequence of variables, which represent the
formals to be bound to the target object and each argument in order.
The “−” symbol is used to represent a hole in a binding term. A
hole might occur, for example, if a pointcut descriptor did not use
this. The set of all possible binding terms isB.

The type information in a body tuple is contained in its last two
elements. The first of these represents the declared type of the
advice, an arrow from formal parameter types to the return type.
The second type element, the last element in the body tuple, is the
type of anyproceed expression contained within the advice body.
While this type information simplifies the subject-reduction proof,
it is not used in the evaluation rules.

4

3.3.3 Evaluation Rules for MiniMAO1
Next we give an intuitive description of the new evaluation rules

in MiniMAO 1. We add new evaluation context rules to handle the
joinpt, under, andchain expressions.

E :: = . . . | joinpt j(v. . .Ee. . .) | under E |
chain B̄, j(v. . .Ee. . .)

The semantics replacesproceed expressions withchain expres-
sions, so we do not need additional rules for handlingproceed.

We replace the CALL rule of MiniMAO0 with a pair of rules,
CALL A and CALL B described below, that introduce join points and
handle proceeding from advice respectively. We replace the EXEC

rule similarly. We introduce three new rules, BODY, ADVISE, and
UNDER.

The evaluation of a program in MiniMAO1 does not begin with
an empty store as in MiniMAO0. Instead, a single instance of each
declared aspect is added to the store. The locations of these in-
stances are recorded in the globaladvice table, AT, which is a set
of 5-tuples. Each 5-tuple represents one piece of advice. The 5-
tuple for the advicet around(t1 var1, . . . , tn varn): pcd { e },
declared in aspecta, is 〈loc,pcd,e,(t1× . . .× tn → t),τ〉, whereloc
is such thatS0(loc) = [a�F] is the aspect instance fora in the initial
store,S0. The function typeτ is the type ofproceed expressions
in e, derived frompcd.

The global class table,CT, is extended in MiniMAO1 to also
map aspect names to the aspect declarations.

3.3.4 Splitting the Call Rule
In MiniMAO 0, a method call is evaluated by applying the CALL

and EXEC rules in turn. In MiniMAO1, each of these steps is bro-
ken into a series of steps. The CALL step becomes:

— CALL A : creates acall join point

— BIND: finds matching advice

— ADVISE: evaluates each piece of advice

— CALL B: looks up method, creates an application form

A similar division of labor is used for EXEC. We next describe each
of these steps in turn.

The CALL A rule is as follows:

〈E[loc.m(v1, . . . ,vn)],J,S〉 CALL A
↪→ 〈E[joinpt (|call,−,m,−,τ|)(loc,v1, . . . ,vn)],J,S〉
whereS(loc) = [t �F],

methodType(t,m) = t1× . . .× tn → t ′,
origType(t,m) = t0, andτ = t0× . . .× tn → t ′

This says that a method call expression with a non-null target eval-
uates to ajoinpt expression where the join point abstraction car-
ries the information about the call necessary to bind advice and to
proceed with the original call. This information is: thecall kind,
the method name, and a function type,τ, for the method that in-
cludes a target type in the first argument position. The function
type is determined using a pair of auxiliary functions, the interest-
ing bits of which are:

CT(c) = class c extends d { field∗ meth1 . . .methp }
∃i ∈ {1..p} ·methi = t m(t1 var1, . . . , tn varn) { e }

methodType(c,m) = t1× . . .× tn → t

origType(t,m) =
max{s∈T · t 4 s∧methodType(s,m) = methodType(t,m)}

The first function,methodType, searches the class table for the
method declaration and returns a function type. The second func-
tion, origType, finds the type of the “most super” class of the target
type that also declares the methodm. (The subtyping relation used
in origTypeis just the reflexive transitive closure of theextends
relation on classes, treating aspects as subtypes ofObject.) The
target type included in thecall join point abstraction generated
by CALL A is this most super class. Using the most super class
allows advice to match a call to any method in a family of overrid-
ing methods, by specifying the target type as this most super class.
We discuss this a bit more when describing thetarget pointcut
descriptor below. Finally, the arguments of the generatedjoinpt

expression are the target location—again in the first position—and
the arguments of the original call, in order.

The BIND rule is the only place in the calculus where advice
binding (lookup) occurs. This rule takes ajoinpt expression and
converts it to achain expression that carries a list of all matching
advice for the join point. It also pushes the expression’s join point
abstraction onto the join point stack.

〈E[joinpt j(v0, . . . ,vn)],J,S〉 BIND

↪→ 〈E[under chain B̄, j(v0, . . . ,vn)], j +J,S〉
whereadviceBind(j +J,S) = B̄

The rule uses the auxiliary functionadviceBindto find the (possibly
empty) list of advice matching the new join point stack and store.

adviceBind(J,S) = B̄, whereB̄ is a smallest list satisfying

∀〈loc,pcd,e,τ,τ ′〉 ∈ AT · ((matchPCD(J,pcd,S) = b 6=⊥)

=⇒ dbb, loc,e,τ,τ ′ce ∈ B̄)

TheadviceBindfunction applies thematchPCDfunction, described
in Section 3.3.5, to find the matching advice in the global advice
table. (We leaveadviceBindunderspecified. In particular, we don’t
give an order for the advice in the list. Any consistent ordering,
such as the declaration ordering used in our examples, will suffice.)

Having found the list of matching advice, the BIND rule then
constructs a newchain expression consisting of this list of advice,
the original join point abstraction, and the original arguments. The
result expression is wrapped in anunder expression to record that
the join point abstraction must later be popped from the stack.

The ADVISE rule takes achain expression with a non-empty list
of advice and evaluates the first piece of advice.

〈E[chain dbb, loc,e, , ce+ B̄, j(v0, . . . ,vn)],J,S〉 ADVISE

↪→ 〈E[under e′{|loc/this|}{|(v0, . . . ,vn)/b|}], j ′+J,S〉
wheree′ = 〈〈e〉〉B̄, j and j ′ = (|this, loc,−,−,−|)

The general procedure is to substitute forthis in the advice
body with the location,loc, of the advice’s aspect and substitute for
the advice’s formal parameters according to the binding term,b.
But before the substitution occurs, the rule uses the〈〈−〉〉B̄, j auxil-
iary function to eliminateproceed expressions in the advice body.

The “advice chaining” auxiliary function,〈〈−〉〉B̄, j , is defined for
proceed expressions as:

〈〈e0.proceed(e1, . . . ,en)〉〉B̄, j

= chain B̄, j(〈〈e0〉〉B̄, j ,〈〈e1〉〉B̄, j , . . . ,〈〈en〉〉B̄, j)

For all other expression forms, the chaining operator is just ap-
plied recursively to every subexpression. Thus〈〈−〉〉B̄, j rewrites all
proceed expressions, replacing them withchain expressions car-
rying the remainder of the advice list̄B, along with the join point
abstraction,j, needed to proceed to the original operation once the
advice list has been exhausted. This rewriting is like that used by

5

e{|〈v0, . . . ,vn〉/〈var 7→ loc,β0, . . . ,βp〉|}=
e{|loc/var|}{|vi/vari |}i∈{0..n}·βi=vari wheren≤ p

e{|〈v0, . . . ,vn〉/〈−,β0, . . . ,βp〉|}=
e{|vi/vari |}i∈{0..n}·βi=vari wheren≤ p

In all other cases, binding substitution is undefined.

Figure 5: Binding Substitution

Jagadeesan et al. [10], though they do not consider the target ob-
ject to be one of the arguments toproceed. Advice chaining is
illustrated with an example in Section 3.3.6.

After using the advice chaining function to rewrite the advice
body, the ADVISE rule uses variable substitution to bind the for-
mal parameters of the advice to the actual arguments. It substitutes
the aspect location,loc, for this and substitutes the actuals for
the formals according tob. We overload notation to define this
substitution for binding terms. Figure 5 gives this definition. The
definition says that the variable in thevar 7→ loc pair is replaced
with the location, unless there is a hole,“−”, in this position of the
binding term. Each element,βi , in the binding term that is not a
hole must be a variable. Each such variable is replaced with the
corresponding argument,vi . For example:

(x.f = y){|〈loc0,loc1〉/〈x 7→ loc2, −, y〉|}
= (loc2.f = loc1)

The x 7→ loc2 in the binding term does not use data from the
arguments〈loc0,loc1〉; the valueloc0 is not used because of the
hole in the binding term; andy is replaced withloc1. The type
system rules out repeated use of a variable in a binding term.

After substitution, the ADVISE rule pushes athis join point
abstraction onto the stack and wraps the result expression in an
under expression.

Once the list of advice has been exhausted, the result is achain

expression with an empty advice list, the original join point abstrac-
tion, and a sequence of arguments. If the BIND rule had found no
advice, then the arguments will be the target and arguments from
the original call. Otherwise, the arguments will be whatever was
provided by the last piece of advice. Thischain expression is used
by the CALL B rule to evaluate the original call.

〈E[chain •,(|call,−,m,−,τ|)(loc,v1, . . . ,vn)],J,S〉 CALL B
↪→ 〈E[(l (loc,v1, . . . ,vn))],J,S〉
whereS(loc) = [t �F] andmethodBody(t,m) = l

The CALL B rule looks up the type of the (possibly changed) target
object in the store and finds the method body in the global class
table. The rule takes the method name from the join point abstrac-
tion. The result of the rule is an application expression, just like the
result of the CALL rule in MiniMAO0.

Because both the CALL A and CALL B rules use a target location
for method lookup, there are corresponding rules fornull targets.
These rules just map to a triple with aNullPointerException
and are omitted here.

A General Technique. The technique used to convert the
CALL rule from the MiniMAO0 calculus into a pair of rules, with
intervening advice binding and execution, is general. The first rule
in the new pair replaces the original expression with ajoinpt ex-
pression, ready for advice binding. The second rule in the pair takes

a chain expression, exhausted of advice, and maps it to a new
expression like the result expression of the rule from MiniMAO0.
This is how the two new EXEC rules are generated:

〈E[(l (v0, . . . ,vn))],J,S〉 EXECA
↪→ 〈E[joinpt (|exec,v0,m, l ,τ|)(v0, . . . ,vn)],J,S〉
wherel = fun m〈var0, . . . ,varn〉.e: τ

〈E[chain •,(|exec,v,m, l ,τ|)(v0, . . . ,vn)],J,S〉 EXECB
↪→ 〈E[under e{|v0/var0, . . . ,vn/varn|}], j +J,S〉
wherel = fun m〈var0, . . . ,varn〉.e: τ and

j = (|this,v0,−,−,−|)

The EXECA rule replaces the application expression with ajoinpt

expression. The join point abstraction of this expression includes
theexec kind, the method name, thefun term of the application,
and the type of thefun term. The abstraction also includes, in the
position reserved forthis objects, the value of the target object
from the argument tuple, becausetarget andthis objects are the
same at anexecution join point. The arguments to thejoinpt
expression are the arguments to the original application expression.

The EXECB rule takes achain expression that has been ex-
hausted of its advice. It applies thefun term from thechain’s join
point abstraction to the argument sequence, substituting the argu-
ments for the variables in the body of thefun term. Like ADVISE,
the EXECB rule pushes athis join point abstraction onto the stack
and wraps its result expression in anunder expression.

It would be straightforward to add pointcut descriptors and join
points for any of the primitive operations in the original calculus.
We would have to generalize the data carried in the join point ab-
stractions to accommodate additional information, but the BIND

and ADVISE rules would remain unchanged. Because thecall

andexec join points are sufficient for our study, we choose not
to include join points for the other primitive operations. To do so
would just introduce additional notation and bookkeeping.

The Under Rule. The UNDER rule is the simplest of the new
evaluation rules.

〈E[under v],J,S〉 ↪→ 〈E[v],J′,S〉 UNDER

whereJ = j +J′, for some j

It just extracts the value from theunder expression and pops one
join point abstraction from the stack.

3.3.5 Pointcut Matching
Following Wand et al. [15], we define thematchPCDfunction

for matching pointcut descriptors to join points using a boolean
algebra over binding terms. Our binding terms, as described in
Section 3.3.2 above, are somewhat more complex than theirs, since
we modelthis, target, andargs pointcut descriptors and faith-
fully model the semantics ofproceed from AspectJ with regard to
changing target objects in advice. Nevertheless, the basic technique
is the same.

The boolean algebra is:

B⊥ = B∪{⊥} b∈B r ∈B⊥ b∨ r = b

⊥∨ r = r ⊥∧ r =⊥ b∧⊥=⊥ b∧b′ = bt· b′

¬⊥= 〈−,−〉 ¬b =⊥

The terms of the algebra are drawn from the setB⊥ = B∪{⊥},
where binding terms can be thought of as “true” and⊥ as “false”.
The operators in the algebra are conjunction (∧), disjunction (∨),
and complement (¬). The double complement of an element is
not necessarily the original element, unless we consider all binding
terms to be isomorphic; the effect of this detail on advice binding

6

is discussed below. The binary operators are short circuiting; for
example,b∨ r = b, ignoring the value ofr. One difference in our
algebra, versus Wand et al. [15], is in the conjunction of two non-⊥
terms. Our calculus must consider the bindings from both terms,
because we have more than one pointcut descriptor that can bind
formals. Sometimes these bindings must be combined, for example
when both atarget andargs pointcut descriptor are used. The
bindings are combined using a pointwise join:

〈α,β0, . . . ,βn〉t· 〈α ′,β ′
0, . . . ,β

′
p〉

= 〈α tα
′,β0tβ

′
0, . . . ,βqtβ

′
q〉

whereq = max(n, p),
∀i ∈ {(n+1)..q} · (βi =−), and
∀i ∈ {(p+1)..q} · (β ′

i =−)

The pointwise join operator extends the shorter binding term if the
two terms do not have the same number of elements. The join
operator,t, on pairs ofα or β terms resolves to the term that is not
a hole. Collisions in the join operator, where neither binding has a
hole at a given position, are resolved in favor of the left-hand term;
however, the typing rules for pointcut descriptors ensure that such
collisions do not occur in well-typed programs.

The rules definingmatchPCDare straightforward. If the pointcut
descriptor matches the join point stack, then the rules construct the
appropriate binding term; otherwise they evaluate to⊥.

The call rule only matches if the most recent join point is of
the corresponding kind and the return type and name of the method
under the join point are matched by the pattern:

matchPCD((|k, ,m, , t0× . . .× tp → t|)+J,

call(u idPat(..)),S)

=

{
〈−,−〉 if k = call, t = u, m∈ idPat

⊥ otherwise

Because this pointcut descriptor does not bind formal parameters, a
match is indicated by an empty binding term. Theexecution rule
is similar.

Two rules are used to handlethis pointcut descriptors:

matchPCD((| ,v, , , |)+J,this(t var),S)

=

{
〈var 7→ v,−〉 if v 6= null, S(v) = [s�F], s4 t

⊥ otherwise

matchPCD((| ,−, , , |)+J,this(t var),S)
= matchPCD(J,this(t var),S)

Together, these rules find the most recent join point where the op-
tional self object location is provided in the join point abstraction.
Once found, if the object record in that location is a subtype of
the formal parameter type, then the formal named by the pointcut
descriptor is mapped to the location; otherwise the result is⊥.

Thetarget pointcut descriptor is handled similarly, but uses the
target type from the join point instead:

matchPCD((| , , , ,s0× . . .×sn → s|)+J,

target(t var),S)

=

{
〈−,var〉 if s0 = t

⊥ otherwise

A rule for searching through the join point stack is elided. Unlike
the this pointcut descriptor, the location to be bound to the for-

mals is not available from the join point abstraction. The location
may come from aproceed expression to be evaluated later. Also
unlike this, target requires an exact type match. This is neces-
sary for type soundness, as noted by Jagadeesan et al. [11]. If the
descriptor were to match when the target type was a supertype of
the parameter type, then the advice could call a method on the ob-
ject bound to the formal that did not exist in the object’s class. On
the other hand, if the descriptor were to match when the target type
was a subtype of the parameter type, then the advice could replace
the target object with a supertype before proceeding to a method
call. If this supertype did not declare the method, then a runtime
type error would result.1 Thus, for soundness thetarget pointcut
descriptor must use exact type matching.

This restriction to exact type matching is not as severe as it may
seem at first. This is because when the CALL A rule generates the
target type for its join point abstraction, it uses the type of the class
declaring the top-most method in the method overriding hierarchy.
Thus, the actual target object for a matched call may be a subtype
of the target type that was matched exactly. Using the declaring
class of this top-most method also means that advice can be written
to match a call to any method in a family of overriding methods.
Unlike the CALL A rule, the EXECA rule creates a join point ab-
straction using the actual target type. Again, this is necessary for
soundness. At anexec join point method selection has already oc-
curred and advice cannot be allowed to change the target object to
a superclass even if that superclass declared an overridden method.

The rule for theargs pointcut descriptor is similar to the one
for target above. It matches if the argument types of the most
recent join point match those of the pointcut descriptor. The result-
ing binding includes all formals named in the pointcut descriptor in
the corresponding positions. As with thetarget pointcut descrip-
tor, only the relative position to be bound, not the actual value, is
available until the advice is executed.

The rules for pointcut descriptor operators (which we elide) sim-
ply appeal to the corresponding operators in the binding algebra:
union to disjunction, intersection to conjunction, and negation to
complement. The definition of complement implies that¬¬pcd 6=
pcd. Both would match the same pointcut, but the former would not
bind any formals while the later might. (This is slightly different
than AspectJ, which simply disallows binding pointcut descriptors
under negation operators.)

A final rule says that any cases not covered by the other rules
evaluates to⊥. This just serves to makematchPCDa total function,
handling cases that do not occur in the evaluation of a well-typed
program (such as matching against an empty join point stack).

3.3.6 Example Evaluations in MiniMAO1
This section gives examples of several evaluations.

Calls in MiniMAO 0 vs. MiniMAO 1. Suppose we have the
program declared in Figure 6. This program does not include any
aspects and the result of evaluating it is the same in MiniMAO0 and
MiniMAO 1, though the difference in the steps taken is illustrative.
In both cases there is an evaluation step with left hand side:

〈L0.m(L1),•,S〉

where the storeSmaps bothL0 andL1 toCl objects. In MiniMAO0
this evolves by the CALL and EXEC rules:

↪→ 〈(fun m〈this, a〉.(this;a):τ (L0,L1)),•,S〉
(CALL)

1Indeed, in AspectJ 1.2, which includes subtype matching for its
target pointcut descriptor, one can generate a run-time type error
in just this way.

7

class Cl extends Object {

Object m(Cl a) { this; a }

}

new Cl().m(new Cl);

Figure 6: A Sample Program Without Aspects

↪→ 〈L0; L1,•,S〉 (EXEC)

where we leaveτ as an exercise for the reader. On the other hand,
the evaluation in MiniMAO1 is:

〈L0.m(L1),•,S〉
↪→ 〈joinpt (|call,−,m,−,τ ′|) (L0, L1),•,S〉 (CALL A)

↪→ 〈under chain •,(|call,−,m,−,τ ′|) (L0, L1),J,S〉
(BIND)

↪→ 〈under
(fun m〈this, a〉.(this;a):τ (L0,L1)),J,S〉

(CALL B)

↪→ 〈under
joinpt (|exec,L0,m,l,τ|) (L0, L1),J,S〉

(EXECA)

↪→ 〈under under

chain •,(|exec,L0,m,l,τ|) (L0, L1),J′,S〉
(BIND)

↪→ 〈under under (L0; L1),J′,S〉 (EXECB)

wherel isfun m〈this, a〉.(this;a):τ, andτ ′, J, andJ′ are left
to the reader. Each step in the original evaluation is split into two
parts, with intervening advice lookup.

Advice Binding. Suppose we add the aspect declaration of
Figure 7 to the program in Figure 6. The presence of this advice
changes the result of the first BIND step above (i.e., the one for
thecall pointcut descriptor). BIND ’s call to adviceBinduses the
following application ofmatchPCD:2

matchPCD((|call,−,m,−,τ ′|),pcd,S)
where τ ′ = Cl×Cl→Object, and

pcd is from Figure 7

= matchPCD((|call,−,m,−,τ ′|),call(Object m(..)),S)
∧matchPCD((|call,−,m,−,τ ′|),target(Cl t),S)
∧matchPCD((|call,−,m,−,τ ′|),args(Cl s),S)

= (〈−,−〉t· 〈−,t〉)t· 〈−,−,s〉
= 〈−,t〉t· 〈−,−,s〉
= 〈−,t,s〉

Using this matching derivation, the result of the BIND step is:

〈under chain db〈−,t,s〉, L2, this, τ ′, τ ′ce,
(|call,−,m,−,τ ′|) (L0, L1),J,S〉

whereL2 is the location of the aspect instance in the initial store.
This triple evolves by the ADVISE rule. Because the body of the
advice does not proceed to the advised code, the result of this step
is the final result of the program, after using UNDER to pop the join
point stack:

↪→ 〈under under L2,J′′,S〉 (ADVISE)

↪→ 〈under L2,J,S〉 (UNDER)

↪→ 〈L2,•,S〉 (UNDER)

aspect A {

Object around(Cl t, Cl s) :

call(Object m(..))

&& target(Cl t) && args(Cl s)

{ this }

}

Figure 7: Aspect Added to Program of Figure 6

aspect A {

Object around(Cl t, Cl s) :

call(Object m(..))

&& target(Cl t) && args(Cl s)

{

s.proceed(t) // swaps target, argument
}

}

class Cl extends Object {

Object m(Cl a) { this; a }

}

class SCl extends Cl {

Object m(Cl a) { new Object() }

}

new Cl().m(new SCl);

Figure 8: A Sample Program Demonstrating Proceed

Advice Chaining. A final example considers advice that pro-
ceeds to the advised code and changes the target object. Consider
the program in Figure 8. Unlike our previous examples, the advice
proceeds and there is a subclass,SCl, which is used for the argu-
ment to the method call. Evaluation of this program reaches a stage
where the result of the BIND rule is:

〈under chain

db〈−,t,s〉, L2, s.proceed(t), τ ′, τ ′ce,
(|call,−,m,−,τ ′|) (L0, L1),J,S〉

where, as before,L2 is the location ofA’s instance andL0 is the lo-
cation of aCl instance, but nowL1 is the location of aSCl instance.
This triple evolves by the ADVISE rule, which calculates

〈〈s.proceed(t)〉〉•, j = chain •, j (s, t)

where j = (|call,−,m,−,τ ′|). The rule then substitutes into this
expression according to the binding term〈−,t,s〉 to form its re-
sult, with the order of the two locations swapped as compared to
the original, advice-free example above:

↪→ 〈under under chain •, j (L1, L0),J′′,S〉 (ADVISE)
↪→ 〈under

(fun m〈Cl this, Cl a〉.(new Object()):τ (L1,L0)),
J′′,S〉

(CALL B)

2Technically the store must be different than before, due to the as-
pect instance in the initial store. However, becauseS is underspec-
ified, we use the same meta-variable here to facilitate comparisons.

8

The method body found by the CALL B rule is declared inSCl,
instead of inCl.

We invite the reader to consider the same example, but replace
the advice’scall pointcut descriptor with a similarexecution
one. This will demonstrate that changing the target object when
proceeding at anexec join point does not affect method selection.

3.4 Static Semantics of MiniMAO1

We next sketch some of the static semantics of MiniMAO1. We
focus on the typing of pointcuts and advice, since they are the most
interesting deviations from past work.

The rules for typing pointcut descriptors make use of a simple
algebra overT ∪{⊥}, whose only operator,t, is used to combine
type information when pointcuts are intersected:

t t⊥= t ⊥t t = t ⊥t⊥=⊥

The operation is undefined fort t s, because in the type judgment
for pointcuts such a combination would indicate a collision and is
disallowed. This operation is also lifted to type sequences.

The type of a pointcut descriptor,pcd, has six parts, ˆu� û′ �U � û′′ �
V1 �V2, where:

— û is thethis type matched bypcd;

— û′ is the target type;

— U is the tuple of argument types;

— û′′ is the return type;

— V1 is the set of variables that would definitely be bound by
pcdat a matched join point; and

— V2 is the set of variables that might be bound there.

Each of the type parts may also be⊥ to indicate that the information
cannot be determined from the pointcut descriptor. The two sets of
variables,V1 andV2, represent “must-bind” and “may-bind” sets re-
spectively, which are useful in reasoning about variable bindings in
pointcut unions and intersections. Well-typed advice requires that
the must-bind and may-bind sets are identical (see the first hypoth-
esis of T-ADV below).

The pointcut descriptor typing rules are mostly straightforward.
We discuss a couple of them here. The T-TARGPCD rule gives the
type for atarget pointcut descriptor:

T-TARGPCD
Γ(var) = t

Γ ` target(t var) :⊥ � t �⊥ �⊥ �{var} �{var}

The hypothesis of the above rule looks up the type ofvar in the type
environmentΓ. (Γ is a partial map fromV ∪{this,proceed} to
T .) The conclusion of the rule records the target type,t, of the
pointcut descriptor and records that the must- and may-bind sets are
both{var}. The rules for the other base cases (call, execution,
this, andargs) are similar.

The most interesting of the typing rules for recursive pointcut
descriptors is the one for intersection:

T-INTPCD
Γ ` pcd1 : û1 � û′1 �U1 � û′′1 �V1 �V ′

1
Γ ` pcd2 : û2 � û′2 �U2 � û′′2 �V2 �V ′

2
û = û1t û2 û′ = û′1t û′2 U = U1tU2 û′′ = û′′1t û′′2

V ′
1∩V ′

2 = /0 V = V1∪V2 V ′ = V ′
1∪V ′

2

Γ ` pcd1 && pcd2 : û� û′ �U � û′′ �V �V ′

This rule allows for the combination of the various binding forms
in pointcut descriptors liketarget(T t) && args(S s). The
first two hypotheses obtain the types ofpcd1 andpcd2. The next

four hypotheses combine these types using thet operator described
above. These hypotheses select the non-⊥ entries from the types
and prevent duplicate bindings. For example, if bothpcd1 andpcd2
have a non-⊥ target type, ˆu′1t û′2 is undefined andpcd1 && pcd2 has
no type. Finally the last three hypotheses deal with the must- and
may-bind sets.V ′

1∩V ′
2 = /0 requires no overlap in the sets variables

that may be bound by the two pointcut descriptors. The last two
hypotheses calculate the combined must- and may-bind sets.

Advice is well typed if its pointcut descriptor matches a join
point where the code under the join point has target typeu0, ar-
gument typesu1, . . . ,up and return typeu.

T-ADV

var1 : t1, . . . ,varn : tn ` pcd: �u0 � 〈u1, . . . ,up〉 �u�V �V
V = {var1, . . . ,varn}

var1 : t1, . . . ,varn : tn,this : a,proceed : (u0× . . .×up → u) ` e: s
s4 t 4 u

` t around(t1 var1, . . . , tn varn) : pcd { e } OK in a

The “ ” in the first hypothesis indicates that the type bound by
a this pointcut descriptor does not affect the advice type. The
pointcut descriptor must also specify bindings for all of the formal
parameters of the advice; the use of{var1, . . . ,varn} for both the
must- and may-bind sets ensures this. Finally, the body of the ad-
vice is typed in an environment that gives each formal its declared
type; givesthis the aspect type,a; and givesproceed the type
derived frompcd. In this environment, the advice body must have
a type that is a subtype of the declared return type of the advice. In
turn, this declared return type must be a subtype of the return type
of the original code under the join point. This allows the result of
the advice to be substituted for the result of the original code.

Rule T-ADV permits advice to declare a return type that is a
subtype of that of the advised method. This means that advice like:

A around(C t) :

call(B m(..)) && target(C t) && args()

{ t.proceed() }

is not well typed ifA is a proper subtype ofB: theproceed expres-
sion has typeB, which is not a subtype of the declared return type
of the advice. Wand et al. [15,§5.3] argue that this advice should
be typable, but we disagree. This case is really no different than a
super call in a language with covariant return-type specialization.
In such a language, an overriding method that specializes the re-
turn type cannot merely return the result of a super call as its result.
The overriding method must ensure that the result is appropriately
specialized.

3.5 Meta-theory of MiniMAO 1

The key property of MiniMAO1 is that it is type sound: a well-
typed program either converges to a value or exception, or else
it diverges. We prove this using the usual subject reduction and
progress theorems. For MiniMAO0, the proofs closely follow those
of Flatt et al. [8]. The soundness proof for MiniMAO1 relies on a
pair of key lemmas that we sketch here. The companion technical
report [4] gives the full details.

The first key lemma is used in the BIND case of the subject re-
duction proof. The lemma relates advice binding to advice typing.
It is used to argue that the list of advice that matches at ajoinpt

expression can be used by the BIND rule to generate a well typed
chain expression. We prove the lemma using a structural induction
on the type derivation for the pointcut of the matching advice.

The second key lemma states that advice chaining, replacing
proceed expressions withchain expressions, does not affect typ-

9

ing judgments given the appropriate assumptions. This lemma is
used for the ADVISE case in the subject reduction proof.

The subject reduction and progress theorems are standard and
are elided. Finally, we have the soundness theorem.

THEOREM 1 (SOUNDNESS). Given a program

P = decl1 . . .decln e, with ` P OK,

and a valid store S0, then either the evaluation of e diverges or else

〈e,•,S0〉
∗

↪→ 〈v,J,S〉 and one of the following hold for v:

— v= loc and loc∈ dom(S),

— v= null, or

— v∈ {NullPointerException,ClassCastException}

4. CONCLUSION
In many respects MiniMAO1 faithfully explains the semantics of

AspectJ’s around advice on method call and execution join points.
In particular, MiniMAO1 faithfully models the binding of argu-
ments and the ability ofproceed to change the target object in
a call join point. The semantics supports this ability by breaking
the processing of method calls into several steps: (i) creating the
join point for the call, (ii) finding matching advice, (iii) evaluating
each piece of advice, and (iv) finally creating an application form.
Since the target object is only used to determine the method called
in step (iv) (the CALL B rule), the advice can change the target by
using a different target in theproceed expression. Such a change
affects the application form created, which affects the join point
created for the method’s execution.

In addition to the necessary simplifications, MiniMAO1, also has
a few interesting differences from AspectJ. In particular the typing
of proceed and the various pointcut descriptions has a different
philosophy from AspectJ. Its typing in MiniMAO1 corresponds to
the type of the method being advised, instead of being related to
the type of the advice’s formal parameters. This contributes to a
simpler and more understandable semantics forproceed.

Future work involves using MiniMAO1 to study the reasoning
problems indicated in the introduction.

References
[1] Martı́n Abadi and Luca Cardelli.A Theory of Objects. Mono-

graphs in Computer Science. Springer-Verlag, 1996.

[2] Jonathan Aldrich. Open modules: A proposal for mod-
ular reasoning in aspect-oriented programming. In Curtis
Clifton, Ralf Lämmel, and Gary T. Leavens, editors,FOAL
2004 Proceedings: Foundations of Aspect-Oriented Lan-
guages Workshop at AOSD 2004, pages 7–18, Lancaster, UK,
2004. URL http://www.cs.iastate.edu/∼leavens/
FOAL/papers-2004/proceedings.pdf.

[3] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James
Riely. µabc: A minimal aspect calculus. InProceedings of
the 2004 International Conference on Concurrency Theory,
pages 209–224. Springer-Verlag, 2004.

[4] Curtis Clifton and Gary T. Leavens. MiniMAO: Investigat-
ing the semantics of proceed. Technical Report TR05-01,
Iowa State University, 2005. Available fromftp://ftp.cs.
iastate.edu/pub/techreports/TR98-08/TR.ps.gz.

[5] Daniel S. Dantas and David Walker. Harmless advice. In
The 12th International Workshop on Foundations of Object-
Oriented Languages (FOOL 12), Long Beach, California,
2005. ACM.

[6] R. Douence, O. Motelet, and M. Südholt. A formal defini-
tion of crosscuts. InReflection 2001, number 2192 in LNCS.
Spring-Verlag, November 2001.

[7] Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state.Theoretical
Computer Science, 103:235–271, 1992.

[8] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. A programmer’s reduction semantics for classes
and mixins. InFormal Syntax and Semantics of Java, chap-
ter 7, pages 241–269. Springer-Verlag, 1999. URLhttp:

//citeseer.ist.psu.edu/flatt99programmers.html.

[9] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A minimal core calculus for Java and GJ.
In Loren Meissner, editor,Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA‘99), volume
34(10), pages 132–146, N. Y., 1999.

[10] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus
of untyped aspect-oriented programs. In Luca Cardelli, editor,
ECOOP 2003, European Conference on Object-Oriented Pro-
gramming, Darmstadt, Germany, volume 2743, pages 54–73.
Springer-Verlag, 2003.

[11] Radha Jagadeesan, Alan Jeffrey, and James Riely. A typed
calculus for aspect oriented programs. Available fromftp://

fpl.cs.depaul.edu/pub/rjagadeesan/typedABL.pdf,
Feb 2004.

[12] Hidehiko Masuhara and Gregar Kiczales. Modeling cross-
cutting in aspect-oriented mechanisms. InECOOP 2003 -
Object-Oriented Programming European Conference, pages
2–28. Springer-Verlag, 2003.

[13] Gordon Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus University,
1981.

[14] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of
aspects. InProceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programming, pages 127–
139, Uppsala, Sweden, 2003. ACM Press.

[15] Mitchell Wand, Gregor Kiczales, and Chris Dutchyn. A se-
mantics for advice and dynamic join points in aspect-oriented
programming.Trans. on Prog. Lang. and Sys., 26(5):890–910,
2004.

[16] Andrew K. Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness.Information and Computation, 115
(1):38–94, 1994.

10

