*

MiniMAOQO: Investigating the Semantics of Proceed

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science
lowa State University
229 Atanasoff Halll
Ames, lowa 50010-1041

{cclifton,leavens}@cs.iastate.edu

ABSTRACT

This paper describes the semantics of MiniMA@ core aspect-
oriented calculus. Unlike previous aspect-oriented calculi, it allows
around advice to change the target object of an advised operation field::=t f

before proceeding. MiniMA@ accurately models the ways As- meth:: =t m(form*) { e }
pectJ allows changing the target object, e.g¢atl join points.
Practical uses for changing the target object using advice include

P:=decl e
decl:: = class c extends c { field" meth }

form:: =t var, wherevar # this

proxies and other wrapper objects. e:=mnew cO |var|null | e.m(e") |
In addition to accurate modeling of bindings fafound advice, e.fle.f =e|castte|e; e

MiniMAO ; has several other features that make it suitable for the

study of aspect-oriented mechanisms, such as those found in As- c.d € ¥, the set of a class names

pectd. Like AspectJ, the calculus consists of an imperative, object-
oriented base language plus aspect-oriented extensions. MifMAO :
has a sound static type system, facilitated by a slightly different f € 7, the set of field names

form of proceed than in AspectJ. me .#, the set of method names

var € {this} U7, where? is the set of variable names
1. INTRODUCTION

This paper describel8liniMAO;, a core aspect-oriented calcu- Figure 1: Syntax of MiniMAO
lus. MiniMAQ1 is designed to explore two key issues in reasoning i
about operations in aspect-oriented programs:

t,s,u€ 7, the set of types

— when advice may change the target object of the operation,

possibly affecting dynamic method selection, and eliminate interfaces, super calls, and method overloading. We drop

let expressions and instead use e to sequentially evaluate
— when advice may change or capture the arguments to, or re-and thene,. We adopt Featherweight Java’s technique of treating
sults from, the operation. the current program and its declarations as global constants. This
avoids burdening the formal semantics with excess notation.
To allow later modeling of method call and execution join points,
we also separate call and execution in the semantics.

MiniMAO 1 is sufficiently expressive to encode key aspect-oriented
idioms. But by minimizing the set of features, we arrive at a core
language that is sufficiently small as to make tractable formal proofs
of type soundness and—in planned extensions—proofs of desiredz_l Syntax of MiniMAO
modularity properties and verification conditions.

In this paper we describe the dynamic semantics of MiniMAO
and an interesting portion of its type system. We also state its
soundness theorem. Because of space limitations, we refer inter-
ested readers to a companion technical report [4] for details that
we omit here. We leave the study of reasoning issues to future
work. For clarity, we begin with a core object-oriented calculus
with classes. We then extend this object-oriented calculus with as-
pects and advice binding.

The syntax for MiniMAQ) is given in Figure 1. A program con-
sists of a sequence of declarations followed by a single expression.
Running a program consists of evaluating this expression.

In MiniMAO ¢ the declarations are all of classes. We omit access
modifiers, which would only add gratuitous complexity; hence all
methods and fields are globally accessible. MiniMy&)so omits
constructors. All objects are created with their fields seiuttl .

The set of types is denoted 3. MiniMAO ¢ includes just one
built-in type,0bject, the top of the class hierarchgbject con-

2. THE BASE LANGUAGE: MInIMAO 0 tains no fields Qr methods. For MiniIMAR T =€, the.Set O.f Val|d
class names¥ is left unspecified, but we use Java identifier con-
oriented calculus with classes, derived from Classic Java [8]. Fol- gnq .

lowing the lightweight philosophy of Featherweight Java [9], we \ost expressions in MiniMA@have a meaning like that in Java,

*Supported by NSF grants CCF-0428078 and CCF-0429567, DUt there are some differences. The expression C() creates an
instance of the class naméegdsetting all of its fields to the default

FOAL 05 Chicago, lllinois USA null value. For syntactic clarity, we follow Classic Java in using a
Copyright(C) 2005, Curtis Clifton and Gary T. Leavens. non-Java syntaxast t e, to represent the Java cédt) e.

2.2 Operational Semantics of MiniMAQ,

We describe the dynamic semantics of MiniMAQGsing a struc-
tured operational semantics [7, 13, 16]. The semantics is quite sim-
ilar to that for Classic Java. There are two main differences: a
stack (used for aspect binding in MiniMA®and the separation of
method call and execution into separate primitive operations.

For the operational semantics we add two expressions that do not

appear in the user-visible syntax.

ex=...|loc| (I (v...))
| ::=fun m({var‘).e:t
Ti=tx..xt—t
v:=loc | null

loc € .Z, the set of store locations

One can think of location$gc € ., as addresses of object records
in a global heap, but we just require th#tis some countable set.
The application expression form is used to model method execu-
tion independently from method calls. In these expressioissa
(non-first-class¥un term that represents a method and...) is

an operand tuple that represents the actual arguments. The appli
cation expression thus records information from method dispatch,
but before execution of the method body. Hua term carries type
information—a function typeg. This type information is not used

in evaluation rules, but is helpful in the subject-reduction proof.
The use of the application expression form in the operational se-
mantics is described in more detail below.

As is typical in an operational semantics, we consider a subset of
the expressions to be irreducible values. The values in Minily]AO
are the locations angla11. Evaluation of a well-typed MiniMAQ
program will produce either a value or an exception.

The evaluation context rules, denotediyserve as implicit con-
gruence rules and define a left-to-right evaluation order:

Ei=—|E.f|E.f =e|v.f =E|cast tE|E;e]|
E.m(e...) |v.m(v...Ee...) | (I (v...Ee...))

The evaluation context for the application form only recurses on the
arguments and not on the method body expression ifiihderm
of the form. Evaluation of the method body does not take place
until the substitution of actuals for formals has been done by the
appropriate evaluation rule.

The relation—, describes evaluation steps:

—: & x Stackx Store— (& UExcep x Stackx Store

This relation takes an expressiere &, a stack, and a store and

maps this to a new expression or an exception, plus a new stack

and a new store. Exceptions are elements of
Excep= {NullPointerException,ClassCastException}.

For MiniMAQ,, the evaluation relation on the stack is identity, so
we leave the seBtackundefined for now. The s@&torecontains

then that value, interpreted in the resulting store, is the result of the
program. There is no guarantee that this evaluation terminates.

The — relation is defined by a set of mutually disjoint rules.
Except for the @LL and Exec, these rules are standard and are
omitted here. The &L rule is:

(E[loc.m(v,...,vn)],3,9
— (E[(] (loc,vy,...,vn))],J,9)
whereS(loc) = [t.F] and methodBodft,m) = |

This says that a method call expression, where the target is a loca-
tion bound in the store, is evaluated by looking up the body of the
method and constructing an application form recording the formal
parameters, method body, and actual arguments. The interesting
part in the definition of the method lookup function is:

CT(c) =class C extends d { field* meth...meth, }
Jdie{1.p} -meth =t m(tyvary,...,tavarn) { e }
T=CxXtyX...Xth—t

methodBodfc,m) = fun m(this,vars,...,varm).e:t

CALL

Another part recursively searches in superclasses when a method is
not found. This models inheritance of methods.

" The application form produced by thexQ. rule is evaluated by

the EXEC rule:

(E[(fun m{var,...,var).e:T (Vg,...,Vn))],J,S
— (E[e{vo/ varg,...,vn/vamn}],J,S

This rule replaceshis and the formal parameters in the body with
the appropriate values. (The notatiefie’ / varf} denotes the stan-
dard capture-avoiding substitution @ffor var in e.)

An example showing the &L and EXEc rules is given in Sec-
tion 3.3.6. The companion technical report contains the complete
operational semantics. It also contains a separate static semantics
and soundness theorem for MiniMAO

EXEC

3. MiniMAO ;: ADDING ASPECTS

In this section we add advice binding to MiniMAOproducing
the aspect-oriented core calculus MiniMAGContinuing with our
minimalist philosophy, the join point model of MiniMAQIs quite
simple. The model only includes11 andexecution join points,
the parameter binding formais, target, andargs, and the op-
erators for pointcut union, intersection, and negation. We inten-
sionally omit temporal join points, such aslow; the techniques
for dealing semantically with such join points are well understood
[15], and such temporal join points do not substantially affect the
typing rules for aspects.

MiniMAO ; accurately models AspectJ’'s semantics for around
advice, in that it allows advice to change the target object of a
method call or execution before proceeding with the operation.
Moreover, as in AspectJ, changing the target object at a call join
point affects method selection for the call, but changing the target
object at an execution join point merely changes the self object of
the already selected method. Changing the target object is useful

maps from locations to object records, where an object record hasfor such idioms as introducing proxy objects. MiniMA@oes de-

the form[t.{f — v- f € don(fieldsOf(t))}].

Although suppressed in the evaluation relation, the declarations
of the program are used to populate a glotiaks tableCT, that
maps class names to their declarations.

Evaluation of a MiniMAQ, program begins with the triple con-

sisting of the main expression of the program, a stack, and an empty

store. The— relation is applied repeatedly until the resulting triple
is not in the domain of the relation. This terminating condition can

part from AspectJ’s semantics for around advice in two ways: it
does not allow changing thehis (i.e., the caller) object at @11

join point and it uses a different form gfroceed, which matches

the shape of the advised code rather than the surrounding advice.
These differences are discussed more below.

3.1 Related Work

No previous work deals with the actual AspectJ semantics of ar-

arise because the resulting triple contains either an irreducible valuegument binding forproceed expressions and an object-oriented

or an exception. If the resulting triple contains an irreducible value,

base language. Wand et al. [15] bind all advice parameters at the

join point instead of at each subsequptiéceed expression. Their

- . > . decl::=... t field* adv'
calculus also is not object-oriented and so does not deal with the ef- e¢ - | aspect a *{ el a }
fects on method selection of changing the target object. Douence ~advii=t around(form™) : pecd { e }
et al. [6] do not formalize advice parameter binding and do notin- pcd:: =call(pat) | execution(pat) |
cludeproceed in their language. Jagadeesan et al. [10] only con- this(form) | target(form) | args(form*) |

sider primitivecall andexecution pointcut descriptors, omitting
pointcut operators (like union and intersection) and the ability of)
advice to change the target object of an invocation. Masuhara and ~ pat::=tidPat(. .)

pcd&& ped | 'ped | ped | | ped

Kiczales [12] do not include around advice in their Scheme-based e:=...| e.proceed(€")
model for an AspectJ-like language. They do sketch how these
features could be added, but do not address the effect on method ac o/, the set of aspect names

selection of changing the target object. Aldrich [2] presents a sys-
tem called “open modules” that includes advice and dynamic join
points with a module system that can restrict the set of control flow
points to which advice may be attached. The system is not object- Figure 2: Syntax Extensions for MiniMAO 1
oriented, so it does not address the issue of changing the target of
a method call, and it does not include state. Dantas and Walker
[5] present a simple object-based calculus for “harmless advice”.
They use a type system with “protection levels” to keep aspects
from altering the data of the base program. In keeping with this
non-interference property, they do not allow advice to change val-
ues when proceeding to the base program. Bruns et al. [3] describ
UABC, a name-based calculus in which aspects are the primitive
computational entity. Their calculus does not include state. While
their calculus does allow modeling of a formmfoceed, It is dif-

ficult to see how it could be used to study the effects of advice on
method selection.

Walker et al. [14] use an innovative technique of translating an
aspect-oriented language into a labeled core language, where th
labels serve as both advice binding sites and targetgdos ex-
pressions, where they are used to translate around advice that doe

not pmg?ﬁgh c\)/g.rg l;_g;%:]t\g’ 3rgeg?nesf&lséieéc?rcoﬁgﬁfsdg]iszgfj patterns to a concrete return type plus an identifier pattern that is
proceedinan obje ng J matched against the name of the called method. We choose not
and Cardelli [1]—it does not consider changing any arguments to . . X

to include matching against target or parameter types here because

the advised code, let alone_ the eﬁ?Cts on method selection of Chang_that is essentially syntactic sugar for therget andargs pointcut
ing the target object of an invocation.

. - L . descriptors.
. Qur operational semantics for.MlnlMA@raws heayﬂy on the We leave the se¥ of identifier patterns underspecified. Gener-
insight of Walker et al. that labeling primitive operations is a use-

. . ; lly, on n think | f regular expression lan
ful technique for modeling aspect-oriented languages. However, to afly, one ca of/” as a class of regular expression languages

handle the run-time changing of the target object and argumentsSUCh that all members o# are elements of a language.i.

when proceeding from advice, we replace their simple labels with Thethis, target, andargs pointcut descriptors correspond to
P ing e : ' =P P . the parameter-binding forms of these descriptors in AspectJ; they
more expressive join point abstractions. Also, rather than intro-

duce these join point abstractions through a static translation from bind the named formal parameters to the corresponding informa-

X tion from the join point. To simplify the operational semantics, the
an aspect-oriented language to a core language, we generate them

dynamically in the operational semantics. The extra data neededxr;tiéJﬁjq:v'rri?;:itg?fﬁziz fg::r:]alop;zr?nnazzt\e/\r’.rigri(:)((;Tm[;l;where
for the join point abstractions (versus the simple static labels) is n) in MiniMAO (where Numberl): is tr,1e type of the formal parame-
more readily obtained when they are generated dynamically. (This . . : ; ; .
dynamic ge¥1eration is also ado)p:ted bgy Dantas ar)lld Walkery) ,(Also tern in the advice declaration). While this type could be inferred,

: ; : : S "including it in the syntax clarifies the formalism. Another sim-
directly typing the aspect-oriented language, instead of just show- h .
ing a t};/pﬁsa%e trans?ation to the Iabe?ed gcore Ianguagej seems t lification versus Aspect] is that thegs pointcut descriptor in

) . .) i g iniMAO ; binds all arguments available at the join point; such
more clearly illustrate the issues in typing advice, though thisisa e
matter of taste bindings do not allow matching of methods with differing num-

bers of arguments, unlike those in AspectJ. MiniMAGoes not
.. include any wildcard or subtype matching feliis, target, or
3.2 Syntax of MiniMAO , args pointcut descriptors.
Figure 2 gives the additional syntax for MiniMAOTo the dec- The final three pointcut descriptor forms represent pointcut nega-
larations of MiniMAQ, we add aspects. For a MiniMA(program tion (!pcd), union cd || pcd), and intersectionpcd && pcd).
the set of types7, is € U <7, wheres/ is the set of aspect names. These last two are “short circuiting”; for example,p€d; in the
An aspect declaration includes a sequence of field declarations andorm pcd; | | pcd, matches a join point, then the bindings defined

idPate .7, the set of identifier patterns

An advice declaration in MiniMA® consists of a return type,
followed by the keyworchiround and a sequence of formal param-
eters. The pointcut descriptor that follows specifies the set of join
epoints—thepointcut—where the advice should be executedoi
point is any point in the control flow of a program where advice
may be triggered. The pointcut descriptor for a piece of advice also
specifies how the formal parameters of the advice are to be bound
to the information available at a join point. The final part of an
advice declaration is an expression that is the advice body.

MiniMAO ; includes a limited vocabulary for pointcut descrip-
tors. Thecall pointcut descriptor matches the invocation of a
fnethod whose sighature matches the given patterneIdeution
ointcut descriptor is similar, but matches the join point corre-
ponding to a method execution. In both of these, we restrict method

a sequence of advice declarations. by pcd; are used angcd, is ignored.

We only includearound advice in MiniMAO;. Operationally, MiniMAO ; also includegroceed expressions, which are only
around advice can be used to model batéfore andafter ad- valid within advice. An expression such&gs proceed(ey,...,en)
vice. (As noted by Jagadeesan et al. [11], the typing rules necessarytakes a targety, and sequence of argumerds,. . ., &,, and causes
for soundness may be less restrictiveefore or after advice.) execution to continue with the code at the advised join point—

Ju=j+J]|e e:=...| joinpt j(€) | under €| chain B,j(€*)
j = = (K, Vopt, Mopt; lopt, Topt) B:=B+B|e
k:i=call | exec | this B:: = [|b,loc,e 1,1

Vopt:: =V | — b: = (a,B,%)

Mopti=m| — o =var—loc| —

lopti=11]— Bi=var| —

Topt =T | — b € 4, the set of advice parameter bindings

Figure 3: The Join Point Stack Figure 4: Expression Forms Added for the Semantics

either the original method or another piece of advice that applies example, the code under a method execution join point is the body
to the same method. As noted above, preceed expression in of the method. The function type includes the type of the target
MiniMAO ; differs from AspectJ. In MiniMAQ, an expression of object as the first argument type.
the formey.proceed(ey,...,&,) must be such that the type of the .
target,ep, and the ntgmber an21 types of the argumeets,. ., en, 3.3.2 New Expression Forms
must match those of thadvised methodsin AspectJ, the argu- The operational semantics relies on three extra expression forms,
ments to proceed must match the formal parameters of the sur-shown in Figure 4. The firsjoinpt, reifies join points of a pro-
roundingadvice This design decision matches our intuition for gram evaluation into the expression syntaxj#inpt expression
how proceed should work; it has little effect on expressiveness consists of a join point abstraction followed by a sequence of actual
in a language with type-safe around advice. Our design also pre-arguments to the code under the join point.
cludes changing thehis object atcall join points. Such changes The second expression form that we add for the operational se-
would only be visible from other aspects, not the base program. mantics isunder. An under expression serves as a marker that
Precluding these changes eliminates some possibilities for aspecthe nested expression is executing under a join point; that is, a join
interference, a useful property for our work on aspect-oriented rea- point abstraction was pushed onto the stack before the nested ex-
soning. We are not aware of any use cases demonstrating a need tpression was added to the evaluation context. When the nested
allow changing thehis object. expression has been evaluated to a value, then the corresponding
. . . join point abstraction can be popped from the stack.

3.3 Operational Semantics of MiniMAO, J Tr?e final additional expresgio?wpformdhain. A chain expres-

This section gives the changes and additions to the operationalsion records a list3, of all the advice that matches at a join point,
semantics for MiniMAQ. We describe the stack, new expression along with the join point abstraction and the original arguments to

forms introduced for the operational semantics, the new evaluation the code under the join point.

rules, pointcut descriptor matching, and give evaluation examples.

3.3.1 The Join Point Stack

The stack in MiniMAQ is a list ofjoin point abstractionswhich
are five-tuples surrounded by half-moon brackgts,), as shown
in Figure 3. A join point abstraction records all the information in

a join point that is needed for advice matching and advice param-

eter bindings, together referred to advice binding A join point

The advice list of achain expression consists dfody tuples
one per matching piece of advice. For visual clarity, “snake-like”
brackets,]|...]|, surround each body tuple. A body tuple is com-
prised of two parts: operational information and type information.
The operational information includeb; a parameter binding term
described belowoc, a location, and, an expression. The loca-
tion is the self object; it is substituted fehis when evaluating the
advice body. The expression is the advice body.

abstraction also includes all the information necessary to proceed The binding term b, describes how the values of actual argu-

from advice to the original code that triggered the join point. A join
point abstraction consists of the following parts (most of which are
optional and are replaced with-* when omitted):

— a join point kind,k, indicating the primitive operation of the
join point, orthis to record the self object at method or ad-
vice execution (for binding thehis pointcut descriptor);

— an optional value indicating the self object at the join point;

ments should be substituted for formals in the advice body. This
substitution is somewhat complex to account for the special bind-
ing of thethis pointcut descriptor, which takes its data from the
original join point, and thearget andargs pointcut descriptors,
which take their data from the invocation proceed expression
immediately preceding the evaluation of the advice body.
Structurally, a binding term consists of a variable-location pair,
var — loc, which is used for anythis pointcut descriptors, fol-
lowed by a non-empty sequence of variables, which represent the

— an optional name indicating the method called or executed at formals to be bound to the target object and each argument in order.

the join point;
— an optionalfun term recording the body of the method to be
executed at an execution join point; and

— an optional a function type indicating the type of the code
under the join point (or, equivalently, the type oproceed
expression in any advice that binds to the join point).

The codeundera join point is the program code that would ex-
ecute at that join point if no advice matched the join point. For

The “—" symbol is used to represent a hole in a binding term. A
hole might occur, for example, if a pointcut descriptor did not use
this. The set of all possible binding terms4&.

The type information in a body tuple is contained in its last two
elements. The first of these represents the declared type of the
advice, an arrow from formal parameter types to the return type.
The second type element, the last element in the body tuple, is the
type of anyproceed expression contained within the advice body.
While this type information simplifies the subject-reduction proof,
it is not used in the evaluation rules.

3.3.3 Evaluation Rules for MiniMAO

Next we give an intuitive description of the new evaluation rules
in MiniMAO ;. We add new evaluation context rules to handle the
joinpt, under, andchain expressions.

E:=...| joinpt j(v...Ee...) | under E |
chain B, j(v...Ee...)

The semantics replacggoceed expressions witlthain expres-
sions, so we do not need additional rules for handfingceed.

We replace the €LL rule of MiniMAQq with a pair of rules,
CALL p and GaLL g described below, that introduce join points and
handle proceeding from advice respectively. We replace ttecE
rule similarly. We introduce three new rulespBY, ADVISE, and
UNDER.

The evaluation of a program in MiniMAQdoes not begin with
an empty store as in MiniMA@ Instead, a single instance of each

declared aspect is added to the store. The locations of these in-

stances are recorded in the globdvice table AT, which is a set
of 5-tuples. Each 5-tuple represents one piece of advice. The
tuple for the advicé around(ty vars,...,tavar): ped { e },
declared in aspeé is (loc,pcd e, (t1 x ... xth — t),7), whereloc
is such tha(loc) = [a.F] is the aspect instance farin the initial
store,S. The function typer is the type ofproceed expressions
in e, derived frompcd

The global class tableCT, is extended in MiniMAQ to also
map aspect names to the aspect declarations.

3.3.4 Splitting the Call Rule

In MiniMAO (, a method call is evaluated by applying thelC
and Exec rules in turn. In MiniMAQ,, each of these steps is bro-
ken into a series of steps. TheQ. step becomes:

— CALL p: creates &all join point

— BIND: finds matching advice

— ADVISE: evaluates each piece of advice

— CALL g: looks up method, creates an application form

A similar division of labor is used for EEc. We next describe each
of these steps in turn.
The CaLL p rule is as follows:

(Elloc.m(vy,...,vn)],J,9 CALL A
— <E[J°1npt (]call,—,m,—,r[)(|OC7V17“~7V|’1)]7J7S>
whereS(loc) = [t.F],

methodTyp, m) =t3 X ... xth — t/,
origTypet,m) =tg, andt =tg x ... X th — t/

This says that a method call expression with a pahi target eval-
uates to aoinpt expression where the join point abstraction car-

The first function,methodTypgesearches the class table for the
method declaration and returns a function type. The second func-
tion, origType finds the type of the “most super” class of the target
type that also declares the method(The subtyping relation used

in origTypeis just the reflexive transitive closure of tketends
relation on classes, treating aspects as subtyp@sjfct.) The
target type included in theall join point abstraction generated
by CALL p is this most super class. Using the most super class
allows advice to match a call to any method in a family of overrid-
ing methods, by specifying the target type as this most super class.
We discuss this a bit more when describing theaget pointcut
descriptor below. Finally, the arguments of the genergteichpt
expression are the target location—again in the first position—and
the arguments of the original call, in order.

The BIND rule is the only place in the calculus where advice
binding (lookup) occurs. This rule takesjainpt expression and
converts it to achain expression that carries a list of all matching
advice for the join point. It also pushes the expression’s join point

5.abstraction onto the join point stack.

(E[joinpt j(Vp,...,Vn)],J,S) BIND
— (E[under chain B, j(Vp,...,vn)],]+J,9

whereadviceBindj +J,5) =B

The rule uses the auxiliary functi@aviceBindo find the (possibly
empty) list of advice matching the new join point stack and store.

adviceBindJ, S) = B, whereB is a smallest list satisfying
v(loc,pcd e, 7,7') € AT - ((matchPCDJ,pcd S) =b # 1)
— [|b,loc,e,7,7']] € B)

TheadviceBindunction applies thenatchPCDfunction, described
in Section 3.3.5, to find the matching advice in the global advice
table. (We leavadviceBindunderspecified. In particular, we don’t
give an order for the advice in the list. Any consistent ordering,
such as the declaration ordering used in our examples, will suffice.)
Having found the list of matching advice, thaN® rule then
constructs a newhain expression consisting of this list of advice,
the original join point abstraction, and the original arguments. The
result expression is wrapped in anider expression to record that
the join point abstraction must later be popped from the stack.
The ADVISE rule takes &hain expression with a non-empty list
of advice and evaluates the first piece of advice.

(E[chain [|b,loc,e,,.]|+B,j(Vo,...,Vn)],J,S) ADVISE
— (E[under €{loc/this[{(vo,-.-,Vn)/b}],i’+3,9
where€' = (€)g; andj’ = (this,loc, —,—,)

The general procedure is to substitute faris in the advice
body with the locationloc, of the advice’s aspect and substitute for
the advice’s formal parameters according to the binding téxm,

ries the information about the call necessary to bind advice and to But before the substitution occurs, the rule uses(thég ; auxil-

proceed with the original call. This information is: thell kind,
the method name, and a function type,for the method that in-

iary function to eliminatgroceed expressions in the advice body.
The “advice chaining” auxiliary function(—)g ;. is defined for

cludes a target type in the first argument position. The function proceed expressions as:

type is determined using a pair of auxiliary functions, the interest-
ing bits of which are:

CT(c) =class C extends d { field* meth...meth, }
Ji e {1..p} -meth =t m(ty vary,...,tavarn) { e }
methodTypge,m) =t1 X ... xth —t

origTypgt, m) =
max{se€ .7 -t < sAmethodTypgs, m) = methodTypg, m)}

{ep.proceed(ey,...,en)>>B_,j
= chain B, j((eo)g;,(e)g:-- (en)s;)

For all other expression forms, the chaining operator is just ap-
plied recursively to every subexpression. TI((us)),; j rewrites all
proceed expressions, replacing them withain expressions car-
rying the remainder of the advice liB; along with the join point
abstractionj, needed to proceed to the original operation once the
advice list has been exhausted. This rewriting is like that used by

eﬂ@@,.

,Vn)/ (var — loc, Bg,....Bp)}} =
efloc/ varl{vi/ variltico.ny.p —va, Wheren<p

e{(vo,...,vn)/{—,Bo,---.Bp)}} =

e{]vi/variB’ie{o..n}ﬁi:vari wheren < p

In all other cases, binding substitution is undefined.

Figure 5: Binding Substitution

a chain expression, exhausted of advice, and maps it to a new
expression like the result expression of the rule from MiniMAO
This is how the two new EEc rules are generated:

(E[C] (Vg,...,Vn))], 3,9 EXECa
— (E[joinpt (exec,Vo,mI,T)(Vo,...,Vn)],J,S
wherel = fun m(varg,...,var,).e: 7

(E[chain e, (exec,vym]I,T)(vp,...,vn)],J,S) EXECp
— (E[under e{vp/varg,...,va/vamn}],j+J,9
wherel = fun m(var,...,var,).e: 7 and

j = (]thiS,V 7_7_7_D

The EXEcCa rule replaces the application expression witfoanpt
expression. The join point abstraction of this expression includes

Jagadeesan et al. [10], though they do not consider the target obthe exec kind, the method name, thiin term of the application,

ject to be one of the arguments p@oceed. Advice chaining is
illustrated with an example in Section 3.3.6.

After using the advice chaining function to rewrite the advice
body, the AoVISE rule uses variable substitution to bind the for-

and the type of thé&un term. The abstraction also includes, in the
position reserved fothis objects, the value of the target object
from the argument tuple, becauserget andthis objects are the
same at arxecution join point. The arguments to thipinpt

mal parameters of the advice to the actual arguments. It substitutesexpression are the arguments to the original application expression.

the aspect locatiorlpc, for this and substitutes the actuals for
the formals according tb. We overload notation to define this
substitution for binding terms. Figure 5 gives this definition. The
definition says that the variable in tivar — loc pair is replaced
with the location, unless there is a hole;’; in this position of the
binding term. Each elemeng;, in the binding term that is not a

hole must be a variable. Each such variable is replaced with the

corresponding argument,. For example:

(x.f = y){(1oc0,1lo0c1)/(x — loc2, —, y)}

= (loc2.f = locl)

The x — loc2 in the binding term does not use data from the
argumentgloc0,locl); the valuelocO is not used because of the
hole in the binding term; ang is replaced withLoc1. The type
system rules out repeated use of a variable in a binding term.
After substitution, the AVISE rule pushes ahis join point

abstraction onto the stack and wraps the result expression in an

under expression.
Once the list of advice has been exhausted, the resuliian

The ExECp rule takes achain expression that has been ex-
hausted of its advice. It applies tfien term from thechain'’s join
point abstraction to the argument sequence, substituting the argu-
ments for the variables in the body of then term. Like ADVISE,
the EXecg rule pushes ahis join point abstraction onto the stack
and wraps its result expression in@amer expression.

It would be straightforward to add pointcut descriptors and join
points for any of the primitive operations in the original calculus.
We would have to generalize the data carried in the join point ab-
stractions to accommodate additional information, but theDB
and ADVISE rules would remain unchanged. Because ¢hgl
and exec join points are sufficient for our study, we choose not
to include join points for the other primitive operations. To do so
would just introduce additional notation and bookkeeping.

The Under Rule. The UNDER rule is the simplest of the new
evaluation rules.

(Efunder V],3,9) — (EM,J.,S)

wherel = j+J', for some j

UNDER

expression with an empty advice list, the original join point abstrac- !t just extracts the value from thender expression and pops one

tion, and a sequence of arguments. If thei® rule had found no

advice, then the arguments will be the target and arguments from
the original call. Otherwise, the arguments will be whatever was

provided by the last piece of advice. Thisain expression is used
by the GaLL g rule to evaluate the original call.

(E[chain e,(call,—,m,—, t)(loc,vi,...,vn)],J,S CALLg
— (E[C] Cloc,vy,...,Vn))], 3,9
whereS(loc) = [t.F] and methodBodft,m) = |

join point abstraction from the stack.

3.3.5 Pointcut Matching

Following Wand et al. [15], we define thmatchPCDfunction
for matching pointcut descriptors to join points using a boolean
algebra over binding terms. Our binding terms, as described in
Section 3.3.2 above, are somewhat more complex than theirs, since
we modelthis, target, andargs pointcut descriptors and faith-
fully model the semantics gfroceed from AspectJ with regard to

The CaLL g rule looks up the type of the (possibly changed) target Changing target objects in advice. Nevertheless, the basic technique
object in the store and finds the method body in the global class IS the same.

table. The rule takes the method name from the join point abstrac-
tion. The result of the rule is an application expression, just like the

result of the @.LL rule in MiniMAO,.

Because both the ALL o and GaLL g rules use a target location
for method lookup, there are corresponding rulesfiarl targets.
These rules just map to a triple withNal1PointerException
and are omitted here.

A General Technique. The technique used to convert the
CaLL rule from the MiniMAQ, calculus into a pair of rules, with

The boolean algebra is:

B, =RBU{L} be# re %, bvr=b
Lvr=r IAar=1 bAL=1 bAb =bub
L =(—-) b= 1

The terms of the algebra are drawn from theggt = ZU {1},
where binding terms can be thought of as “true” ands “false”.
The operators in the algebra are conjunctio), disjunction {/),

intervening advice binding and execution, is general. The first rule and complement-). The double complement of an element is

in the new pair replaces the original expression witjoénpt ex-

not necessarily the original element, unless we consider all binding

pression, ready for advice binding. The second rule in the pair takesterms to be isomorphic; the effect of this detail on advice binding

is discussed below. The binary operators are short circuiting; for mals is not available from the join point abstraction. The location
example bV r = b, ignoring the value of. One difference in our may come from groceed expression to be evaluated later. Also
algebra, versus Wand et al. [15], is in the conjunction of two non- unlike this, target requires an exact type match. This is neces-
terms. Our calculus must consider the bindings from both terms, sary for type soundness, as noted by Jagadeesan et al. [11]. If the
because we have more than one pointcut descriptor that can binddescriptor were to match when the target type was a supertype of
formals. Sometimes these bindings must be combined, for examplethe parameter type, then the advice could call a method on the ob-
when both atarget andargs pointcut descriptor are used. The ject bound to the formal that did not exist in the object's class. On

bindings are combined using a pointwise join: the other hand, if the descriptor were to match when the target type

was a subtype of the parameter type, then the advice could replace

(a,Bos- - Br) (e, B, - Bp) the target object with a supertype before proceeding to a method
= (aud,Bolif.....BgLIBL) call. If this supertype did not declare the method, then a runtime

type error would resuft. Thus, for soundness therrget pointcut
Whereq.: max(n, p), descriptor must use exact type matching.
vie{(n+1)..q} (fi =—), and This restriction to exact type matching is not as severe as it may

vie{(p+1).q}- (B =-) seem at first. This is because when theLCp rule generates the

The pointwise join operator extends the shorter binding term if the target type for its join point abstraction, it uses the type of the class
two terms do not have the same number of elements. The join declaring the top-most method in the method overriding hierarchy.
operator}, on pairs ofo or B terms resolves to the term thatis not ~ Thus, the actual target object for a matched call may be a subtype
a hole. Collisions in the join operator, where neither binding has a Of the target type that was matched exactly. Using the declaring

however, the typing rules for pointcut descriptors ensure that such t0 match a call to any method in a family of overriding methods.
collisions do not occur in well-typed programs. Unlike the GaLL p rule, the EXECa rule creates a join point ab-
The rules definingnatchPCDare straightforward. If the pointcut Straction using the actual target type. Again, this is necessary for

descriptor matches the join point stack, then the rules construct theSoundness. At aexec join point method selection has already oc-
appropriate binding term; otherwise they evaluate to curred and advice cannot be allowed to change the target object to

The call rule only matches if the most recent join point is of @ superclass even if that superclass declared an overridden method.
the corresponding kind and the return type and name of the method ~ The rule for theargs pointcut descriptor is similar to the one

under the join point are matched by the pattern: for target above. It matches if the argument types of the most
recent join point match those of the pointcut descriptor. The result-
matchPCO(k, -, m, _,tg X ... xtp — t) +J, ing binding includes all formals named in the pointcut descriptor in
call(uidPat(..)),9 the corresponding positions. As with therget pointcut descrip-
tor, only the relative position to be bound, not the actual value, is
_J(=,—) ifk=call,t=u, meidPat available until the advice is executed.
)L otherwise The rules for pointcut descriptor operators (which we elide) sim-

) _ _ _ ply appeal to the corresponding operators in the binding algebra:
Because this pointcut descriptor does not bind formal parameters, aynjon to disjunction, intersection to conjunction, and negation to

match is indicated by an empty binding term. Th@cution rule complement. The definition of complement implies thatpcd £
is similar. _ _ pcd. Both would match the same pointcut, but the former would not
Two rules are used to handi@is pointcut descriptors: bind any formals while the later might. (This is slightly different

. than AspectJ, which simply disallows binding pointcut descriptors
matchPCR(-,V, -, -,-) +J, this(tvar),S) under negation operators.)

{(varHv,—> if v£null, V) = [s.F], st A final rule says that any cases not covered by the other rules

= evaluates ta.. This just serves to makmatchPCDa total function,
handling cases that do not occur in the evaluation of a well-typed

program (such as matching against an empty join point stack).

3.3.6 Example Evaluations in MiniMAO

This section gives examples of several evaluations.

1 otherwise

matchPCD)(.,—,-,-,-) +J,this(t var),S)
= matchPCDJ, this(tvar),S)

Together, these rules find the most recent join point where the op-
tional self object location is provided in the join point abstraction.
Once found, if the object record in that location is a subtype of
the formal parameter type, then the formal named by the pointcut
descriptor is mapped to the location; otherwise the result is
Thetarget pointcut descriptor is handled similarly, but uses the

Calls in MiniMAO ¢ vs. MiniMAO ;. Suppose we have the
program declared in Figure 6. This program does not include any
aspects and the result of evaluating it is the same in Miniidaod
MiniMAO 4, though the difference in the steps taken is illustrative.
In both cases there is an evaluation step with left hand side:

target type from the join point instead: (L0.m(L1),e,S)
matchPCO(.,.,,.,S0 X ... X S, —) +J, where the stor&maps bottL0 andL1 to C1 objects. In MiniMAQ,
target (tvar),S) this evolves by the &L and EXEC rules:
(—var) if sp=t — ((fun m(this, a).(this;a):7 (LO,L1)),e,S
- {J_ otherwise (CaLL)

] o) S) lindeed, in AspectJ 1.2, which includes subtype matching for its
A rule for searching through the join point stack is elided. Unlike target pointcut descriptor, one can generate a run-time type error
the this pointcut descriptor, the location to be bound to the for- in just this way.

class Cl extends Object {
Object m(Cl a) { this; a }
}

new C1().m(new Cl);

Figure 6: A Sample Program Without Aspects

— (LO; L1,e,5) (EXEC)

where we leave as an exercise for the reader. On the other hand,
the evaluation in MiniMAQ is:

(LO.m(L1),e,9)
— (joinpt (call,—,m,—,7/) (LO, L1),e¢,S (CALLA)

— (under chain e,(call,—,m,—,7/) (LO, L1),J,S

(BIND)
— (under
(fun m(this, a).(this;a):7 (LO,L1)),J,S
(CALLB)
— (under (EXECA)
joinpt (exec,LO,m,l,7) (LO, L1),J,S
< (under under (BIND)
chain e,(exec,LO,m,l,7) (LO, L1),J.S
< (under under (LO; L1),J.S (ExECg)

wherel is fun m(this, a).(this;a):t,and7’,J, andY are left
to the reader. Each step in the original evaluation is split into two
parts, with intervening advice lookup.

Advice Binding. Suppose we add the aspect declaration of
Figure 7 to the program in Figure 6. The presence of this advice
changes the result of the firsti® step above (i.e., the one for
the call pointcut descriptor). BiD’s call to adviceBinduses the
following application ofmatchPCL?

matchPCO(call, —,m,—, 7/),pcd,S)
where 1/ = C1xCl—0bject, and
pcdis from Figure 7

= matchPCD(call,—,m,—,7/),call(Object m(..)),S)
AmatchPCD(call,—,m,—, /), target (C1 t),9
AmatchPCQ(call,—,m,—, t/),args(Cl s),9)

(= =) (= t)) (=, —,s)

<77t>H<7,77S>

<—7t7S>

Using this matching derivation, the result of thexB step is:

(under chain [|(—,t,s), L2, this, ©/, 7/,
(call,—,m,—,7/) (LO, L1),J,S

whereL2 is the location of the aspect instance in the initial store.
This triple evolves by the AvISE rule. Because the body of the

advice does not proceed to the advised code, the result of this step

is the final result of the program, after usingibER to pop the join
point stack:

— (under under L2,J7.S) (ADVISE)
— (under L2,J,S) (UNDER)
— (L2,0,S) (UNDER)

aspect A {
Object around(Cl t, Cl s)
call(Object m(..))
&% target(Cl t) && args(Cl s)
{ this }

Figure 7: Aspect Added to Program of Figure 6

aspect A {
Object around(Cl t, Cl s)
call(Object m(..))
&& target(Cl t) && args(Cl s)

s.proceed(t) // swaps target, argument

}
class Cl extends Object {

Object m(Cl a) { this; a }
}
class SCl extends Cl {

Object m(Cl a) { new Object() }
}

new C1().m(new SC1);

Figure 8: A Sample Program Demonstrating Proceed

Advice Chaining. A final example considers advice that pro-
ceeds to the advised code and changes the target object. Consider
the program in Figure 8. Unlike our previous examples, the advice
proceeds and there is a subclas®l, which is used for the argu-
ment to the method call. Evaluation of this program reaches a stage
where the result of the BD rule is:

(under chain
[(-,t,s), L2, s.proceed(t), 7/,
(call,—,m,—,t/) (LO, L1),J,S

]|,

where, as beforé,2 is the location of’s instance and.0 is the lo-
cation of aC1 instance, but now1 is the location of &C1 instance.
This triple evolves by the AvISE rule, which calculates

(s.proceed(t))), j =chain e, (s, t)

wherej = (call,—,m,—, /). The rule then substitutes into this
expression according to the binding tefm, t,s) to form its re-
sult, with the order of the two locations swapped as compared to
the original, advice-free example above:

— (under under chain e,j (L1, L0),J”.S) (ADVISE)
— (under
(fun m(Cl this, Cl a).(mew Object()):7 (L1,L0)),
7.9
(CALLB)

2Technically the store must be different than before, due to the as-
pect instance in the initial store. However, beca@sesunderspec-
ified, we use the same meta-variable here to facilitate comparisons.

The method body found by theACL g rule is declared irsC1,
instead of inC1.

We invite the reader to consider the same example, but replace
the advice'scall pointcut descriptor with a similagxecution
one. This will demonstrate that changing the target object when
proceeding at aexec join point does not affect method selection.

3.4 Static Semantics of MiniMAO,

We next sketch some of the static semantics of MiniMA@/e
focus on the typing of pointcuts and advice, since they are the most
interesting deviations from past work.

The rules for typing pointcut descriptors make use of a simple
algebra over7 U{_L}, whose only operator}, is used to combine
type information when pointcuts are intersected:

tuLl=t lut=t lul=1

The operation is undefined fotIs, because in the type judgment
for pointcuts such a combination would indicate a collision and is
disallowed. This operation is also lifted to type sequences.

The type of a pointcut descriptged, has six parts). 0 .U . 0",
V1.V,, where:

— (is thethis type matched bycd,
— (' is the target type;
— U is the tuple of argument types;
— (" is the return type;

— V1 is the set of variables that would definitely be bound by
pcdat a matched join point; and

— Vs is the set of variables that might be bound there.

Each of the type parts may also hdo indicate that the information
cannot be determined from the pointcut descriptor. The two sets of
variablesy; andV,, represent “must-bind” and “may-bind” sets re-
spectively, which are useful in reasoning about variable bindings in
pointcut unions and intersections. Well-typed advice requires that
the must-bind and may-bind sets are identical (see the first hypoth-
esis of T-Abv below).

The pointcut descriptor typing rules are mostly straightforward.
We discuss a couple of them here. The AREPCD rule gives the
type for atarget pointcut descriptor:

T-TARGPCD
I(var) =t

I target(tvar):L.t.L.L.{var}.{var}

The hypothesis of the above rule looks up the typeawin the type
environment”. (I is a partial map fron¥ U {this, proceed} to
Z.) The conclusion of the rule records the target typesf the

four hypotheses combine these types using tbperator described
above. These hypotheses select the hoentries from the types
and prevent duplicate bindings. For example, if botd; andpcd,
have a noni target typen L0, is undefined angcd,; && pcd, has
no type. Finally the last three hypotheses deal with the must- and
may-bind setsV; NV, = 0 requires no overlap in the sets variables
that may be bound by the two pointcut descriptors. The last two
hypotheses calculate the combined must- and may-bind sets.
Advice is well typed if its pointcut descriptor matches a join
point where the code under the join point has target typear-
gument typesiy, ..., Up and return typei.

T-ADV
vary :tg,...,varm:tq - pcd: .. Ug. (Ug,...,Up) . U.V.V
V ={vary,...,var}
vary :tg,...,varm th,this:a,proceed: (Up x ... X Up — u) - e:s
sxt=xu

Ft around(t; vary,...,ty var,) pcd { e} OKina

The “_" in the first hypothesis indicates that the type bound by
a this pointcut descriptor does not affect the advice type. The
pointcut descriptor must also specify bindings for all of the formal
parameters of the advice; the use{ofiry,...,varp} for both the
must- and may-bind sets ensures this. Finally, the body of the ad-
vice is typed in an environment that gives each formal its declared
type; givesthis the aspect typeq; and givesproceed the type
derived frompcd. In this environment, the advice body must have
a type that is a subtype of the declared return type of the advice. In
turn, this declared return type must be a subtype of the return type
of the original code under the join point. This allows the result of
the advice to be substituted for the result of the original code.

Rule T-Abv permits advice to declare a return type that is a
subtype of that of the advised method. This means that advice like:

A around(C t)
call(B m(..)) && target(C t) && args()
{ t.proceed() }

is not well typed ifAis a proper subtype @&: theproceed expres-

sion has type, which is not a subtype of the declared return type
of the advice. Wand et al. [185.3] argue that this advice should
be typable, but we disagree. This case is really no different than a
super call in a language with covariant return-type specialization.
In such a language, an overriding method that specializes the re-
turn type cannot merely return the result of a super call as its result.
The overriding method must ensure that the result is appropriately
specialized.

3.5 Meta-theory of MiniMAO ;

pointcut descriptor and records that the must- and may-bind sets are The key property of MiniMAQ is that it is type sound: a well-

both{var}. The rules for the other base casesl(l, execution,
this, andargs) are similar.

The most interesting of the typing rules for recursive pointcut
descriptors is the one for intersection:

T-INTPCD
rl—pCdlil]j_.l]g_.Ul.L/]/]{.Vl.V]{
rl—pCdziﬂz.ﬂlz.Uz.fllzl.Vz.VZ/
=040 GIZOS_UO/z U=UuU, LAJ”:G,:{UGIZ,
ViNVa=0 V=ViUV, V' =VjuVs

I+ pcd; && ped,:G.0 .U .07 V.V

This rule allows for the combination of the various binding forms
in pointcut descriptors likearget (T t) && args(S s). The
first two hypotheses obtain the typespafd; andpcd,. The next

typed program either converges to a value or exception, or else
it diverges. We prove this using the usual subject reduction and
progress theorems. For MiniMAQthe proofs closely follow those

of Flatt et al. [8]. The soundness proof for MiniMAQelies on a

pair of key lemmas that we sketch here. The companion technical
report [4] gives the full details.

The first key lemma is used in the® case of the subject re-
duction proof. The lemma relates advice binding to advice typing.
It is used to argue that the list of advice that matches jatiapt
expression can be used by thexB rule to generate a well typed
chain expression. We prove the lemma using a structural induction
on the type derivation for the pointcut of the matching advice.

The second key lemma states that advice chaining, replacing
proceed expressions witkthain expressions, does not affect typ-

ing judgments given the appropriate assumptions. This lemma is [5] Daniel S. Dantas and David Walker. Harmless advice. In

used for the AVISE case in the subject reduction proof. The 12th International Workshop on Foundations of Object-
The subject reduction and progress theorems are standard and Oriented Languages (FOOL 12) ong Beach, California,
are elided. Finally, we have the soundness theorem. 2005. ACM.

[6] R. Douence, O. Motelet, and M.ulholt. A formal defini-
tion of crosscuts. IiReflection 2001number 2192 in LNCS.
P =deck ...dech e, with - P OK, Spring-Verlag, November 2001.

THEOREM1 (SOUNDNESS. Given a program

and a valid store & then either the evaluation of e diverges orelse [7] Matthias Fﬁlleigen afnd Robert 'l‘“eb- TTE fijngg;eDOf_t Oln the
. * ¢ the following hold for v: syntactic theories of sequential control and stateeoretical
(e#,%) = (3,5 and one of the following hold for v Computer Sciencd 03:235-271, 1992.

— v=loc and loce dom(S), [8] Matthew Flatt, Shriram Krishnamurthi, and Matthias

— V=null, or Felleisen. A programmer’s reduction semantics for classes
. . . and mixins. InFormal Syntax and Semantics of Jachap-

— ve {NullPointerException,ClassCastException} ter 7, pages 241-269. Springer-Verlag, 1999. URitp:

//citeseer.ist.psu.edu/flatt99programmers.html.

4. CONCLUSION [9] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-

In many respects MiniMA@faithfully explains the semantics of erweight Java: A minimal core calculus for Java and GJ.
AspectJ’s around advice on method call and execution join points. In Loren Meissner, editorProceedings of the 1999 ACM
In particular, MiniMAQ, faithfully models the binding of argu- SIGPLAN Conference on Object-Oriented Programming, Sys-
ments and the ability oproceed to change the target object in tems, Languages and Applications (OOPSLA'9®)Iume

a call join point. The semantics supports this ability by breaking 34(10), pages 132146, N. Y., 1999.
the processing of method calls into several steps: (i) creating the
join point for the call, (ii) finding matching advice, (iii) evaluating [10] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus

each piece of advice, and (iv) finally creating an application form. of untyped aspect-oriented programs. In Luca Cardelli, editor,
Since the target object is only used to determine the method called ECOOP 2003, European Conference on Object-Oriented Pro-
in step (iv) (the @LL g rule), the advice can change the target by gramming, Darmstadt, Germanyolume 2743, pages 54—-73.
using a different target in thegroceed expression. Such a change Springer-Verlag, 2003.

affects the application form created, which affects the join point
created for the method’s execution.

In addition to the necessary simplifications, MiniMAGlso has)
a few interesting differences from AspectJ. In particular the typing fpl.cs.depaul . edu/pub/rjagadeesan/typedABL. pdf,
of proceed and the various pointcut descriptions has a different Feb 2004.
philosophy from AspectJ. Its typing in MiniMADcorresponds to [12] Hidehiko Masuhara and Gregar Kiczales. Modeling cross-
the type of the method being advised, instead of being related to cutting in aspect-oriented mechanisms. BEOOP 2003 -

[11] Radha Jagadeesan, Alan Jeffrey, and James Riely. A typed
calculus for aspect oriented programs. Available fetxp: //

the type of the advice’s formal parameter_s. This contributes to a Object-Oriented Programming European Conferenpages
simpler and more understgndabl_e _semantlcsfm:eed. _ 2-28. Springer-Verlag, 2003.
Future work involves using MiniMA® to study the reasoning

problems indicated in the introduction. [13] Gordon Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus University,
1981.

References

[1] Martin Abadi and Luca Cardellid Theory of ObjectsMono- [14] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of

aspects. IProceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programmjmgges 127—

[2] Jonathan Aldrich. Open modules: A proposal for mod- 139, Uppsala, Sweden, 2003. ACM Press.

ular reasoning in aspect-oriented programming. In Curtis 15 vjitchell Wand, Gregor Kiczales, and Chris Dutchyn. A se-
Clifton, Ralf Lammel, and Gary T. Leavens, editoROAL mantics for advice and dynamic join points in aspect-oriented

2004 Proceedings: Foundations of Aspect-Oriented Lan- programmingTrans. on Prog. Lang. and Sy&6(5):890-910,

graphs in Computer Science. Springer-Verlag, 1996.

guages Workshop at AOSD 2Q@4ages 7-18, Lancaster, UK, 2004
2004. URL http://www.cs.iastate.edu/~leavens/ '
FOAL/papers-2004/proceedings . pdf. [16] Andrew K. Wright and Matthias Felleisen. A syntactic ap-

proach to type soundnedsiformation and Computatiqril5
[3] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James (1):38-94, 1994.
Riely. pabc: A minimal aspect calculus. FProceedings of
the 2004 International Conference on Concurrency Theory
pages 209-224. Springer-Verlag, 2004.

[4] Curtis Clifton and Gary T. Leavens. MiniMAO: Investigat-
ing the semantics of proceed. Technical Report TR05-01,
lowa State University, 2005. Available froftp://ftp.cs.
iastate.edu/pub/techreports/TR98-08/TR.ps.gz

10

