
Subverting the Fundamentals Sequence:
Using Version Control to Enhance Course Management

Curtis Clifton, Lisa C. Kaczmarczyk, and Michael Mrozek
Department of Computer Science and Software Engineering

Rose-Hulman Institute of Technology
5500 Wabash Ave.

Terre Haute, Indiana 47803-3999

{clifton, kaczmarc, mrozekma}@rose-hulman.edu

ABSTRACT
Instructors of introductory courses face many challenges,
not the least of which is dealing with a large volume of
course materials and students with differing backgrounds.
There are often too many administrative demands to have
as much time for creative pedagogy as one would like. Team
projects, and complex realistic projects in general, increase
psychic demands, and conflicting schedules make creative
collaboration with other instructors impossible. In order to
address these issues, we need to find ways to increase ef-
fective handling of course development, to free up time for
creative pedagogical efforts. This paper reports on an ex-
ploratory project in which two instructors and an undergrad-
uate teaching assistant used the Subversion version control
system to collaborate remotely on developing and running
two CS1 classes. We focus on the ease and efficiency of
course management using Subversion, providing a new per-
spective on how version control can enhance teaching.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-managed
instruction; K.3.2 [Computer and Information Science
Education]: Computer science education

General Terms
Management

Keywords
Version control, Subversion, CS1, fundamentals sequence,
course management

1. INTRODUCTION
Complex projects, and working in teams, are often de-

sirable in early CS courses in order to provide motivating
projects and realistic applications. To increase retention

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07,March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

it is important to engage students’ interests and provide a
supportive environment at the beginning of the curriculum.
However, it is hard to manage complex projects in introduc-
tory courses. For example, in many institutions, CS1 is a
large lecture class, with an unwieldy volume of instructional
material to manage. Time management problems are exac-
erbated by the addition of complex projects. Instructors of
different sections may want to collaborate, but such work
may not venture beyond sharing of a syllabus, assignments
and exams. Conflicting class schedules and the unique needs
of beginning students make it hard to find time to creatively
collaborate on course development and management. In or-
der to avoid being overwhelmed by administrative tasks, in-
structors may feel they do not have time to focus on creative
pedagogy with complex group work in CS1.

Industry deals with software complexity and collaborative
development efforts using version control systems. Given the
similarity of the administrative challenges faced by several
instructors managing a large group of students and a team
of software developers working on a distributed project, it
makes sense to find a way to enlist version control in CS1.

The primary goal of this paper is share the results of us-
ing version control in CS1 to reduce administrative demands
and to support creative collaboration between two instruc-
tors and an undergraduate teaching assistant. This paper
presents the results of an exploratory project in which the
Subversion version control system was integrated into two
sections of a CS1 class that uses complex Java pair and team
projects. The three members of the instructional staff rarely
met in person, yet interaction was highly effective between
them. Version control reduced duplication of development
effort, and simplified organization of shared materials. Be-
cause students also used version control, instructors were
able to keep tabs on student progress easily. This moni-
toring often led to spontaneous course adjustments during
the term – without lengthy in-person meetings. The under-
graduate teaching assistant used version control to provide
timely feedback to students. All of these benefits of using
version control allowed the instructors to focus their ener-
gies on their primary mission: the pedagogical demands of
providing CS1 students a successful learning experience.

2. BACKGROUND

2.1 What is Version Control?
A version control system is a set of tools for managing

changes in a file or set of files over time. A typical version

control system includes a central repository containing the
current version of all files. The central repository also stores
documentation of all changes made to the files along with
data for restoring any past versions. Each user of the sys-
tem typically keeps a working copy (or several) on his or
her computer. Popular version control systems include the
Concurrent Versions System (CVS) [2] and Subversion [3].

Many professional software developers consider version
control to be an essential part of the software development
toolkit [9, §28.2][11, §3]. Hunt and Thomas point out that
version control is like a global “undo” operation that works
over days and weeks, not just over the current editing session
[5, §17]. Software developers can also use version control as
an aid in debugging, by performing a binary search over the
versions since the last known good one.

2.2 Previous Applications of Version Control
Version control systems are beginning to be integrated

into coursework at different levels of the curriculum. Most
previous work with version control in the CS classroom has
focused on how it can provide more realistic software de-
velopment experiences for students, but none has tackled
course management issues in a CS1 course. In addition,
most previous work has used CVS, however a more flexible
alternative is now available.

Hartness [4] proposed having students use CVS for soft-
ware development. Linder et al. [7] had students use CVS
in a project-intensive third course. Although acknowledging
the critical importance of using version control for complex
projects, this very interesting paper provides few details on
how CVS may have been used on a day to day basis by in-
structors or students. Liu et al. [8] used CVS to visualize
team and individual contribution in a software engineering
class. Their study demonstrates that repository data con-
tains a wealth of information the instructor can use to mon-
itor team and student progress. As in the preceding paper,
this work does not discuss any application of version control
for instructional development and course management.

Reid and Wilson [10] used CVS to provide students a more
realistic software development experience in a CS2 course.
Interestingly, the authors also describe how CVS affected
their efficiency and workload, using this opportunity to point
out several important drawbacks to using CVS. These prob-
lems included high maintenance, high storage requirements
for large classes, students accidentally damaging reposito-
ries, and security issues including the potential for student
cheating. However, they noted that these problems were not
inherent to version control and could be avoided or elimi-
nated by using another system such as Subversion.

Subversion has many advantages over CVS, while remain-
ing open source. Unlike CVS, Subversion allows users to
modify directory structures and rename files while retaining
historic information. This feature allows the instructor to
track all student work rather than potentially losing some
information. Subversion is also able to perform more op-
erations without connecting to the central repository than
CVS, thus reducing the time before the instructor or stu-
dent can continue his or her work. Unlike CVS, which uses
Unix file permissions for access control, Subversion can use
a single text file to describe fine-grained access control on a
per-team or per-user basis. The greatly reduces the effort re-
quired to maintain a secure system. Subversion makes more
efficient use of server disk space than CVS does, making it a

better choice in resource-constrained environments. Finally,
students only interact with their repositories via the Sub-
version tools, avoiding the damaged repositories that Reid
and Wilson saw with CVS [10].

There has also been some work on using version control
for managing non-code artifacts. For example, an interesting
case for using version control to manage complex intellectual
work comes from an unexpected setting: collaborative cre-
ative writing. Lee et al. [6] lay out a detailed argument for
using version control to reduce workload and help manage
document development between several busy or geograph-
ically remote people. They make a compelling argument
for not only using version control to assist in collaborative
writing, but for doing so asynchronously. The benefits of
using version control for team document development are
thoroughly discussed, but unfortunately the authors have
not yet implemented their ideas.

The prior work, and the improvements that Subversion
provides over CVS, clearly indicate that there is an opportu-
nity to use Subversion to support collaborative course man-
agement.

3. IMPLEMENTING THE PROJECT

3.1 People and Their Needs
The Rose-Hulman Institute of Technology (RHIT) is a

small, private science and engineering college operating with
three 10-week terms. Course work proceeds rapidly, with
students in all courses expected to complete substantial de-
sign and implementation. The 12 Computer Science and
Software Engineering (CSSE) faculty frequently collaborate
on course development, sharing instructional resources such
as tests, assignments, and sample programs. This is espe-
cially true for the introductory classes (CS1, CS2), which
are commonly taught by several different instructors each
year, often during the same term.

Currently, CS1 uses pair programming [1] for several com-
plex OOP assignments and teams of 2-4 students collaborate
on two large projects. Managing these constantly changing
teams can mean time consuming behind the scenes work.
As at many other institutions, CS1 and CS2 are taken by
potential majors as well as students filling a requirement for
another degree. Therefore prior experience and motivation
vary widely. Instructors need to reduce the time spent on
administrative tasks so that they can concentrate on peda-
gogical issues.

To address these administrative needs, and to support col-
laborative course management, the instructional staff began
experimenting in the fall of 2005 with using version con-
trol as a course management tool. Subversion was chosen
because it is open source, and (as discussed above) has sev-
eral advantages over CVS. In this first phase, five course
faculty used Subversion to store and update their personal
instructional materials. Faculty shared some material using
version control at this time, but version control was not used
to manage assignments.

The second phase, and the focus of this paper, was to
use version control to collaboratively develop and update
all course materials during a term. This meant also using
version control to distribute, collect, and evaluate all student
programming projects across multiple sections of a course.
Two unusually small sections of CS1 provided a low risk
opportunity to evaluate this new application of version con-

trol. In addition, one of the CS1 instructors had extensive
experience with version control systems, while the other in-
structor did not. The teaching assistant (an undergraduate,
and third author of this paper) had no experience using ver-
sion control. This diversity of experience, along with the
small class sizes, provided a unique opportunity to evalu-
ate the use of version control in the complex environment
of CS1. The goal of the exploratory study was to find out
if version control could be successfully used in a CS1 course
to enhance the efficiency and effectiveness of collaborative
course management, so that more time and energy would
remain for actual teaching.

3.2 Version Control Tools Used
As noted in the previous section, the CSSE department

uses the open-source Subversion version control system [3].
The central repository is hosted on a Linux-based server.
The introductory sequence uses the Eclipse integrated de-
velopment environment. Students and instructors use the
Subclipse plug-in for Eclipse to manage working copies of
Java source code. TortoiseSVN is used for non-source-code
files.1

The tools used in the course were the same tools used by
the instructors for course management in this study. The
instructor with extensive experience served as primary ad-
ministrator of the Subversion server.

3.3 Managing Assignments and Projects With
Version Control

Version control facilitated all phases of every student project
in the course. Figure 1 shows the phases of a typical project,
starting at the upper left. The rectangles represent instruc-
tor actions. The instructors would distribute template code
to all students by running a couple of simple scripts on the
department server. (These scripts are available from http:

//www.rose-hulman.edu/∼clifton/svnScripts or by con-
tacting the authors.) After distributing the template code,
the instructor would demonstrate a finished project for his
or her class: a single Subclipse operation sufficed to checkout
the finished code from a secure section of the repository.

After the class demonstration, students would begin work-
ing on the project. Parallelograms in Figure 1 represent stu-
dent actions. Students worked in parallel, regularly sharing
code and other artifacts with teammates using Subclipse and
TortoiseSVN. Though not shown in the figure, the instruc-
tors could monitor student work during this time by using
a single Subversion command to grab a current snapshot of
their progress.

Because all work was stored in the central repository, stu-
dents did not have to explicitly turn in work at the due
date. Instead, the teaching assistant (see ellipse in Figure
1) would use a single Subversion command to retrieve copies
of all the student work. He would assess the work and add
feedback directly within it. Another single Subversion com-
mand would distribute the feedback to every student on the
team.

Finally, each student would use a single Subversion com-
mand to get an updated version of their work that included
the assistant’s feedback.

1Subversion server software, Subclipse, and TortoiseSVN are
all available from http://scm.tigris.org. Eclipse is avail-
able from http://www.eclipse.org.

4. EVALUATION OF VERSION CONTROL
FOR COURSE MANAGEMENT

4.1 The Instructors’ Perspective
Subversion reduced instructor workload and improved time

management in several ways. For example, the instructors
had only two free hours a week in common, which meant
that those meetings had to give priority to topics needing
in-depth discussion. Subversion allowed these face-to-face
meetings to be highly productive, because they excluded
the more mundane tasks on which the instructors worked
asynchronously but collaboratively. These tasks included
the development of schedules, course documents, and pa-
perwork required for accreditation.

4.1.1 Distributing Materials
The instructors also used the version control system for

maintaining the course web site. The main course repository
included a “Public” subdirectory that contained the entire
course web site. It was easy to develop or revise materials
by just editing local copies. Often one instructor would be
updating homework assignments while another updated pre-
sentation materials. This work proceeded in parallel. When
the materials were ready for publication, a single Subversion
command updated the working copy of the Public subdirec-
tory on the web server. It took mere seconds to combine
and publish the materials for class use.

Version control also let the instructors quickly and easily
create and distribute new sample exercises. On one occa-
sion, the instructors decided that an additional interactive
example would help to solidify a concept. After creation, the
complete distribution of the exercise only took three minutes
and did not require writing any instructions to the students
about how to retrieve it.

4.1.2 Interactions with Students
Version control simplified dealing with student absences.

For example, on one occasion a student was ill and missed
several days of class, by which time the other students on
his team had started and completed a project. It took the
instructor about 30 seconds to created a new repository for
the student and give him a clean copy of the template so
that he could complete the work individually. The version
control system then allowed the assistant to grade this stu-
dent’s work without any additional instructor intervention.
On another occasion a student missed the last day of a pair
programming assignment. His partner had already com-
pleted the assignment when the first student returned to
class. The instructor was able to create a new repository for
the absent student that contained the last collaborative work
of the pair. The student could then complete the project on
his own, demonstrating his competence with the material.
Again, the instructor effort to do this was minimal.

Version control also reduced administrative load by allow-
ing instructors to provide direct and timely feedback to stu-
dents. When grading was complete, the instructor or assis-
tant packaged the results, along with a list of comments and
suggestions, and committed the entire compilation to the
students’ repositories. It was not necessary to wait for class
to meet to hand back paper copies. The students received
feedback sooner than under previous assessment methods,
and in a neat predictable format. In addition, the reposi-
tory maintained an easily accessible record of progress.

Distribute
Template Code

to Student
Teams

Action Key

Instructor
Student

Assistant

Demonstrate
Finished Project

in Class

Assess
Results and Give

Feedback

Review
Feedback

Move on to
next project

start
Each Team

…

Complete
and Share

Project Work

Complete
and Share

Project Work

Figure 1: Version control at all phases of a student project in CS1.

Even before official grading began, version control made
it very easy to do “spot checking” on student work; at any
time, without having to ask the students to turn in anything,
the instructors could look at the student repositories to find
out if projects were being checked in, what changes were
being made and who was making the changes. Thus the
instructor could arrive at class prepared to target individual
students or teams who appeared to be having difficulties.

This ability to look in at work in progress also stream-
lined the handling of student questions. When a student
asked for help during office hours or by email, the instruc-
tor could quickly checkout a current version of the student’s
project. This let the instructor focus on helping the student
understand and solve his or her problem. Email requests for
help that previously would have resulted in a lengthy series
of messages were often dealt with in a single exchange.

4.2 The Assistant’s Perspective
RHIT uses its undergraduate assistants primarily for grad-

ing, and so the teaching assistant offers a unique perspective
on the benefits of version control for assessment. As men-
tioned previously, our CSSE courses emphasize the value of
teamwork. While our projects are constructed to encourage
team-oriented work, a risk is that sometimes a minority of
students do a disproportionate amount of the work. This is
a particular concern in CS1, where we want to ensure that
each student gets off on the right foot. Without version
control, trying to determine which team member had done
which part of a project was at best difficult, and at worst,
impossible. The longer a project took, the less distinct each
student’s contribution would become over time.

When we used version control, this problem was sub-
verted. This is because one of the features of version control
systems is that they accurately and automatically provide
(after the fact) both a task list and an iterative enhancement
plan via the revision log. (Liu et al. [8] pursued a similar
idea.) While students may not have fully appreciated this
feature, we could use it to determine who changed what,
and when. Apropos, the very mechanism that encouraged
teamwork on a project also enforced it.

As an example of how effective this method of evaluation
can be, we examined repository data collected for the final
project of the Spring CS1 course described in this paper.
In one case, a pair of students with 46 revisions split them

exactly, with each partner committing 23 changes, showing
excellent division of tasks. In another case, despite the fact
that the students on a team forgot to assign tasks on their
original iterative enhancement plan, the revision log clearly
showed that one student made only 18 of the nearly 200
project revisions. On a three person team, responsible for
138 revisions, two of the students split the work, making 54
and 44 revisions each, while the third made only three revi-
sions. By breaking the data down by weeks, it became clear
that these three revisions happened at the end of the project;
from this data we can infer that this student was busy with
other things early on, or that his partners finally objected
to his lack of contributions, and forced him to finish the
project. These examples highlight just a few ways in which
version control makes it easier for assistants (and instruc-
tors) to gain insight into student contributions to complex
projects.

5. DISCUSSION AND FUTURE WORK
The small class sizes permitted a safe exploration of how

Subversion could reduce administrative load and enhance
collaborative course management in CS1. Following the suc-
cess of this exploratory study, the next step is to apply these
same tools and techniques in a larger class. It will be im-
portant to verify that the successful collaboration and live
course management reported in this paper will scale up to a
larger student body. There is every reason to believe these
successful results will scale up, because the nature of version
control is that it scales well to large projects.

From a user perspective, both the instructor with less ver-
sion control experience and the assistant with no prior ex-
perience found the system very easy to learn and use. A few
caveats are worth noting however. First, it was extremely
helpful to have an experienced version control user as one of
the faculty, as he was able to rapidly address the rare but
occasional technical needs that arose. For example, navi-
gating the features of the Subclipse plug-in for Eclipse was
at first confusing to the other instructor. It was valuable to
have the experienced faculty member available to provide
an overview. Second, the current version of Subversion as-
sumes that the primary administrator is comfortable in a
command-line Unix environment. At this time there is no
GUI front-end for managing repositories and access permis-

sions. This could be problematic to administrators new to
Unix.

Anecdotal evidence suggests that students enjoyed using
Subversion as well. For example, during one class, a stu-
dent experienced hardware failure moments after commit-
ting his contribution to a team project. His initial shock
at seeing the “blue screen” disappeared when he realized
his work was not lost and his team pumped their arms in
the air and cheered “Go, Tortoise!”2 It was also interesting
to watch students intently studying their assessment notes
in the repository; not one student in either section of CS1
said they did not understand their grades – by being able to
easily view their annotated work, they were able to answer
their own questions. Thus the instructor was able to spend
more time helping with new assignments than before the use
of version control.

A next step in evaluating student use of version control
would be to formally study student perceptions of its value
to them both as a project development tool and as a feed-
back mechanism. As just one example, the commit process
was intuitive to the instructors but not to many of the stu-
dents. It would be interesting to analyze why students found
this concept difficult to grasp. Writing log messages is an-
other fertile topic to investigate: some students wrote very
useful messages, while others wrote terrible messages. It
would be interesting to explore how students view the log
in relation to their development efforts, and leverage that
information to improve their learning.

Yet another way to investigate student learning would be
to follow the model taken by Zimmermann et al. [12]. They
developed a system that analyzed version control log files
to determine which files changed simultaneously. Based on
this analysis, the system could suggest likely oversights when
users later changed just one of a set of (probably) mutual
dependent files.

There are many interesting pedagogical questions that
could be answered by conducting a thorough statistical anal-
ysis of the log files. For example, the number of commits
per student is only an imperfect predictor of the amount of
the work done. One student might work an entire afternoon
on a project and commit once at the end. Another might
be afraid of losing data and so commit after every change.
Beyond the obvious fact that numbers alone do not tell ev-
erything about what a student is doing, what might these
data reveal about the working styles of different students
on a team? It would be interesting to investigate how this
information could be used to enhance individual and team
learning.

6. CONCLUSIONS
The results shared in this paper provide a new perspective

on how version control can be used in CS1. In particular,
they show how Subversion can be used to support instruc-
tor collaboration and creativity, by reducing administrative
demands, increasing effective communication, and stream-
lining interaction with students. The central repository and
running logs enabled two instructors and an undergradu-
ate teaching assistant to develop and dynamically manage
a high volume of instructional materials and student deliv-
erables effectively. As a result, the instructional staff had
more free time to concentrate on pedagogical issues in an

2Recall TortoiseSVN is one of the version control tools used.

introductory class that used complex team projects. Many
instructors collaborate on introductory classes and have a
desire to implement complex projects in those classes. In
Subversion they now have a ready tool to help them find
the time and creative energy to do so.

7. ACKNOWLEDGEMENTS
The authors would like to thank Gary Leavens for his

helpful comments; Matt Boutell, David Mutchler, and Steve
Chenoweth for previous collaboration on more limited ap-
plications of version control; and Mike McLeish for initial
configuration of the Subversion server used in the study.

References
[1] K. Beck. Extreme Programming Explained.

Addison-Wesley, 1999.

[2] P. Cederqvist. CVS—concurrent versions system.
Available from http:

//ximbiot.com/cvs/manual/cvs-1.11.22/cvs.html,
2006.

[3] B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version Control with Subversion. O’Reilly,
2004.

[4] K. T. Hartness. Eclipse and CVS for group projects.
In CCSC’06. Consortium for Computing Sciences in
Colleges, 2006.

[5] A. Hunt and D. Thomas. The Pragmatic Programmer.
Addison Wesley Longman, Inc., 1999.

[6] B. G. Lee, K. H. Chang, and N. H. Narayanan. An
integrated approach to version control management in
computer supported collaborative writing. In Proc. of
the 36th annual Southeast regional conference, pages
34–43. ACM Press, 1998.

[7] S. P. Linder, D. Abbott, and M. J. Fromberger. An
instructional scaffolding approach to teaching software
design. In CCSC’06. Consortium for Computing
Sciences in Colleges, 2006.

[8] Y. Liu, E. Stroulia, K. Wong, and D. German. Using
CVS historical information to understand how
students develop software. In MSR 2004:
International Workshop on Mining Software
Repositories, 2004.

[9] S. C. McConnell. Code Complete. Microsoft Press,
2004.

[10] K. L. Reid and G. V. Wilson. Learning by doing:
Introducing version control as a way to manage
student assignments. In SIGCSE’05, pages 272–276.
ACM Press, 2005.

[11] J. Spolsky. Joel on Software. Springer-Verlag, New
York, NY, 2004.

[12] T. Zimmermann, V. Dallmeier, K. Halachev, and
A. Zeller. eRose: Guiding programmers in eclipse. In
Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 186–187. ACM
Press, 2005.

