
Concurrency in the Curriculum:
Demands and Challenges

Position Paper

Curtis Clifton
Dept. of Computer Science and Software Engineering

Rose-Hulman Institute of Technology
Terre Haute, Indiana USA

clifton@rose-hulman.edu

ABSTRACT

This position paper describes my background as a practi-
tioner and educator. It outlines some ideas on the general
directions for curricular change to address concurrency and
parallelism. Finally, the paper identifies a key challenge in
making this transition.

1. BACKGROUND
I learned to program in Applesoft BASIC as a primary

school student in the early 80s. Undergraduate studies in
Electrical Engineering exposed me to FORTRAN and Pas-
cal. As an intern at IBM I picked up APL and C. Then I
embarked on a career as a controls engineer and found that
ladder logic on programmable logic controllers (PLCs) was
the development platform of choice at the companies where
I worked.

After 6 years in industry, I decided to pursue a career in
teaching and research, so returned to school. In my first year
of graduate school I was introduced to Scheme, SmallTalk,
Haskell, Java, and C++. Despite exposure to all these lan-
guages, plus a few left unlisted, I only did a single academic
project that involved concurrency in any real way, a project
in an Operating Systems course that used fork and join. Un-
fortunately, this lack of exposure to practical concurrency
and parallelism is not atypical.

I’m now in my fifth year as an assistant professor at Rose-
Hulman Institute of Technology teaching software devel-
opment, programming languages, and compilers to small
classes of bright students. I’ve taught all the courses in
our introductory sequence, including object-use-early CS1
(first in Java, then Python), CS2 (Java), and Data Struc-
tures (Java). I also developed and teach an upper-division
elective course, Programming Language Paradigms, where
we explore three different programming languages through
a series of programming etudes [2] focusing on particular

Submitted to the First Workshop on Curricula in Concurrency
and Parallelism, OOPSLA 2009

features of each language.1 I try to include at least one lan-
guage focused on concurrency. Thus far I’ve used Erlang.
Students also conduct a team project in a fourth language.
I plan to encourage at least one team this fall to explore the
Hadoop framework for data-intensive scalable computing.

I come to the workshop as an outsider to the fields of par-
allel and scientific computing. I recognize the significance
of the transition to multicore computing and am seeking
out the best ideas for how to prepare our students for this
new age. I attended a three day, NSF-sponsored workshop
on Data Intensive Scalable Computing at the University of
Washington-Seattle in 2007. I also attended the birds of
a feather session on Multi-Core Programming in the Cur-
riculum at the SIGCSE Technical Symposium on Computer
Science Education in 2009. Last spring I led a discussion
with our department’s industrial advisory board on what
curricular changes they think are needed to address the tran-
sition. Given the unsettled nature of the technology, their
responses were wide-ranging, from just teaching traditional
locks and threads to completely integrating concurrency and
parallelism across the curriculum.

Rose-Hulman is a small, teaching-focused school. Our
mission is centered on outstanding undergraduate educa-
tion. Our teaching focus and mission lead to small class sizes
(fewer than 25 students) and close interactions between stu-
dents and faculty. These generally serve our students well.
However, in times of transition we must work hard to not
be caught flat footed. None of our 12 faculty members is
engaged in research on parallel or multicore computing. We
don’t have experts on the cutting-edge science, but we do
have expertise on active and project-based learning. We
haven’t yet made significant changes to our curriculum to
address the growing importance of concurrency and paral-
lelism. I’m working to gather information about best prac-
tices and will begin a discussion this fall about how best to
adapt.

2. PRESENT AND FUTURE DEMANDS
As an outsider to the current research, I don’t bring strong

preconceived notions about how best to prepare undergrad-
uate Computer Science students for the age of concurrent
and parallel programming. My sense is that we aren’t ade-

1Our students take a required Programming Language Con-
cepts course taught using the Essentials of Programming
Languages [3] pedagogy—a series of interpreters imple-
mented in Scheme.



quately preparing students for this fundamental transition,
in part because we don’t yet understand how software will
be developed for these systems.

Certainly software is already being developed for such sys-
tems, but it doesn’t seem like the low-level techniques of
message passing libraries and threads will scale. By “scale”
here I don’t mean scaling to more processors, but scaling
to more programmers. Implementing software using these
low-level techniques is notoriously hard. I suspect that ad-
vances in programming languages, compilers, and operating
systems will change the techniques used to develop for mas-
sively multicore and distributed systems. Given that, we’re
faced with two complementary demands:

• we must prepare our students to develop software in
the present, using the current tools and techniques;
and

• we must prepare our students for the future, to think
about issues of currency and parallelism so that they
are ready to adopt the new tools and techniques as
they appear.

In the workshop call, the organizers are asking the right
questions to get at the curricular effects of these two de-
mands.

To be prepared for the future, every Computer Science
graduate should understand the fundamental ideas of race
conditions, deadlock, and the overhead involved in parallel
algorithms. They should understand how our traditional
techniques of algorithm analysis are inadequate not only in
the presence of memory system effects, but also in the pres-
ence of parallelism. To be prepared for the present, they
should be able to design and implement scalable software
that takes advantage of parallelism using current techniques.

We will have the greatest success teaching concurrency
and parallelism by combing the top-down and bottom-up
approaches. Different students learn best in different ways.
Some need to understand the nitty-gritty details to accept
the big picture. Others need the big picture to motivate
learning the details. Besides the differences in students, the
two demands above also argue for using both teaching ap-
proaches. Practically, low-level approaches are in common
use and high-level approaches—exemplified by MapReduce
and open implementations like Hadoop—are growing in use.
In the future we don’t know what approaches will dominate.

The questions of whether to teach sequential program-
ming as a special case of concurrent and parallel program-
ming and whether these issues should be addressed in in-
troductory computer science courses are intimately related.
As Joe Armstrong says in Programming Erlang, “the world
is parallel,” and “A deep understanding of concurrency is
hardwired into our brains.”[1] Our students, particularly
those who come to us without prior programming experi-
ence, already know how to think concurrently. We often
struggle to teach them to think sequentially, only to later
teach them how to apply more complicated reasoning atop
that sequential base to manage concurrency.2 This leads
to a fragile epicycles-on-epicycles mental model. We should
teach concurrency early and treat sequential programming
as the special case. Like elliptical orbits, this is seemingly

2Our emphasis on imperative languages in the early curricu-
lum also contributes to our challenges teaching concurrency
and parallelism.

more complicated, but the result is a simpler, more robust
model of reality.

Our department is taking a mixed approach on the ques-
tion of concentrating or distributing these topics in the cur-
riculum. We are developing a new systems course for fresh-
men that takes a breadth-first approach to hardware logic,
operating systems, and hardware-software interfaces. This
course will introduce some topics in concurrency and paral-
lelism. We also introduce thread-based concurrency (using
Java GUI applications) in our introductory Software De-
velopment sequence. Our junior-level Operating Systems
course delves deeper into race conditions, deadlocks, and
other pitfalls. We offer a couple of electives that give stu-
dents more depth, including one on Parallel Computing and
my Programming Language Paradigms course. The Insti-
tute is inaugurating an interdisciplinary minor this fall on
Computational Science. The leader of this effort is based in
the Math department and is focusing on traditional scientific
computing techniques. Topics like cloud computing, using
GPUs for general purpose processing, massively multicore
computing, parallel data structures, and analysis of parallel
algorithms don’t yet have a home in our curriculum.

3. A KEY CHALLENGE
A key challenge faced by small departments, and by any

departments looking to distribute concurrency and paral-
lelism ideas across the curriculum, is the lack of expert fac-
ulty. This problem was also faced when introducing object-
oriented software development into the curriculum. The
community must help provide resources for teaching these
topics. These resources might include concise, complete
reading material targeted at an undergraduate audience,
on-line lectures or tutorials, and well written exercises and
project assignments. Training resources for instructors, such
as the OOPSLA Educators’ Symposium, are also needed.

4. CONCLUSION
The transition to massively multicore and distributed com-

puting is already well underway. I look forward to sharing
in the discussion at the workshop, bringing new curricular
ideas back to my home campus, and participating in the
continuing efforts of the educational community to prepare
all our students for this new age.

5. REFERENCES
[1] J. Armstrong. Programming Erlang: Software for a

Concurrent World. Pragmatic Programmers, 2007.

[2] J. Bergin. Variations on a polymorphic theme: An
etude for computer programming. In Ninth Workshop
on Pedgogies and Tools for the Teaching and Learning
of Object Oriented Concepts, 2005.

[3] D. P. Friedman, M. Wand, and C. T. Haynes.
Essentials of Programming Languages. MIT Press, 2nd
edition, 2001.


