
MultiJava: Design Rationale,
Compiler Implementation, and Applications

Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers

TR #04-01b
December 2004

Revised version of TR #04-01, dated January 2004 and titled

MultiJava: Design Rationale, Compiler Implementation, and User Experience

Keywords: Open Classes, Open Objects, Extensible Classes, Extensible Exter-
nal Methods, External Methods, Multimethods, Generic Functions, Object-oriented
Programming Languages, Single Dispatch, Multiple Dispatch, Encapsulation, Mod-
ularity, Static Typechecking, Subtyping, Inheritance, Java Language, MultiJava
Language, Separate Compilation

2002 CR Categories: D.3.1 [Programming Techniques] Object-oriented Pro-
gramming; D.3.2 [Programming Languages] Language Classifications — object-
oriented languages; D.3.3 [Programming Languages] Language Constructs and Fea-
tures — abstract data types, classes and objects, control structures, inheritance,
modules, packages, patterns, procedures, functions and subroutines; D.3.4 [Pro-
gramming Languages] Processors — compilers; D.3.m [Programming Languages]
Miscellaneous — generic functions, multimethods, open classes.

Copyright c© 2004, Curtis Clifton, Todd Millstein,
Gary T. Leavens, and Craig Chambers, Submitted for Publication.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

MultiJava: Design Rationale, Compiler
Implementation, and Applications

CURTIS CLIFTON

Iowa State University

TODD MILLSTEIN

University of California, Los Angeles

GARY T. LEAVENS

Iowa State University

and

CRAIG CHAMBERS

University of Washington

MultiJava is a conservative extension of the Java programming language that adds symmetric

multiple dispatch and open classes. Among other benefits, multiple dispatch provides a solution

to the binary method problem. Open classes provide a solution to the extensibility problem of
object-oriented programming languages, allowing the modular addition of both new types and

new operations to an existing type hierarchy. This paper illustrates and motivates the design

of MultiJava and describes its modular static typechecking and modular compilation strategies.
Although MultiJava extends Java, the key ideas of the language design are applicable to other

object-oriented languages, such as C# and C++, and even, with some modifications, to functional

languages such as ML.
This paper also discusses the variety of application domains in which MultiJava has been suc-

cessfully used by others, including pervasive computing, graphical user interfaces, and compilers.

MultiJava allows users to express desired programming idioms in a way that is declarative and
supports static typechecking, in contrast to the tedious and type-unsafe workarounds required

in Java. MultiJava also provides opportunities for new kinds of extensibility that are not easily
available in Java.

Categories and Subject Descriptors: D.3.1 [Programming Techniques]: Object-oriented Pro-

gramming; D.3.2 [Programming Languages]: Language Classifications—object-oriented lan-

guages; D.3.3 [Programming Languages]: Language Constructs and Features—abstract data
types; classes and objects; control structures; inheritance; modules, packages; patterns; pro-

cedures, functions, and subroutines; D.3.4 [Programming Languages]: Processors—compil-
ers; D.3.m [Programming Languages]: Miscellaneous—method families; multimethods; open

classes

General Terms: Languages, Design

Additional Key Words and Phrases: Open Classes, Open Objects, Extensible Classes, Extensi-

ble External Methods, External Methods, Multimethods, Method Families, Generic Functions,
Object-oriented Programming Languages, Single Dispatch, Multiple Dispatch, Encapsulation,
Modularity, Static Typechecking, Subtyping, Inheritance, Java Language, MultiJava Language,

Separate Compilation, Expression Problem, Binary Method Problem, Augmenting Method Prob-

lem

1. INTRODUCTION

In this paper we describe the design and implementation of MultiJava [Clifton
et al. 2000; Clifton 2001] and the ways in which the language has been used

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004, Pages 1–59.

2 · Curtis Clifton et al.

by others [Millstein 2003]. MultiJava is a backward-compatible extension to the
Java programming language [Gosling et al. 2000] that supports symmetric multiple
dispatch and open classes. MultiJava is backward compatible with Java in two
ways. First, existing Java programs are legal MultiJava programs and have the
same meaning. Second, code using MultiJava’s new language features interoper-
ates with existing Java source and bytecode. Our MultiJava compiler is available
from www.multijava.org.

1.1 The Problem

We begin by describing two problems that arise with mainstream object-oriented
programming languages like C++ and Java [Stroustrup 1997; Arnold et al. 2000;
Gosling et al. 2000]. These problems are examples of a general extensibilty problem
that arises from not being able to dynamically dispatch on a class except by editing
the class in place.

1.1.1 The Binary Method Problem. A well-known problem in mainstream object-
oriented programming languages concerns expressing the behavior of methods when
that behavior should vary with the dynamic types of more than one argument.
Traditionally, the problem is considered in terms of binary methods, two-argument
methods where the argument types should vary together. In the Shape class of
Fig. 1, the method for calculating the intersection of two shapes—the receiver ob-
ject this and the argument object s—is a binary method. Suppose that one wishes
to create a class Rectangle as a subclass of Shape. When intersecting two rectan-
gles, one can use a more efficient algorithm than for arbitrary shapes. We would
like to implement this more efficient algorithm for rectangles, without having to
modify existing code, in either the Shape class or its clients. Further, we would like
to do this in a way that can be statically typechecked for safety.

Unfortunately there is no straightforward way to do this, because mainstream
object-oriented languages cannot safely use subtypes in the argument positions of
overriding methods. Doing so would violate the standard restriction against covari-
ant subtyping for function parameter types [Cardelli 1988]. Thus, such languages
cannot easily specify overriding binary methods for cases where both the receiver
and non-receiver arguments are subtypes of the original types. This difficulty in
specifying specialized behavior for overriding binary methods is known as the binary
method problem [Bruce et al. 1995; Castagna 1995].1

In Section 2.1 we demonstrate several partial solutions to the binary method
problem in Java and show how the problem can be solved with multiple dispatch
in MultiJava.

1.1.2 The Augmenting Method Problem. Another well-known challenge in pro-
gramming language design is to simultaneously support both the easy addition
of new types and the easy addition of new operations to an existing type hierar-
chy [Reynolds 1975; Cook 1991; Odersky and Wadler 1997; Krishnamurthi et al.

1Another part of the binary method problem is that, in some languages, a receiver object of

a binary method cannot easily take advantage of the private representation of the non-receiver
argument. This part of the problem does not arise in Java, because in Java’s encapsulation model

all instances of a class have access to the private representation of all other instances of the class.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 3

public class Shape {
. . .
public Shape intersect(Shape s) {

. . .

}
}

Fig. 1. A simple class with a binary method, intersect

1998; Findler and Flatt 1999; Garrigue 2000; Zenger and Odersky 2001]. For ex-
ample, suppose we have a program with a collection of types representing various
shapes—like Shape, Rectangle, and Triangle—and a collection of operations on
these types, like area and intersect. We would like to easily add both new shape
types and new shape operations to the program. Furthermore, both of these forms
of extension should be expressible without having to modify the existing types or
their existing clients.

In traditional functional and procedural languages, each operation is implemented
separately from its associated type hierarchy. Thus, it is easy to add new operations
to an existing type or type hierarchy. But there is no support for subclassing, so the
addition of new types requires all existing operations on the associated type hier-
archy to be updated in place. Conversely, in traditional object-oriented languages
it is easy to modularly add new types to an existing type hierarchy via subclassing,
and overriding methods allow existing operations on that hierarchy to be easily
updated. However, each method must be declared inside its associated class, so
there is no support for the modular addition of new operations; each existing class
must be updated in place to contain a new method.

These problems of adding new types in functional or procedural languages and
new operations in object-oriented languages are dual cases of what Wadler termed
the expression problem.2 We focus on object-oriented programming and its tradi-
tional data-centric encapsulation. We call the need for non-modular editing to add
new operations in object-oriented languages the augmenting method problem.

In Section 2.2 we demonstrate attempts to solve the augmenting method problem
in Java and a solution using MultiJava’s open classes.

1.1.3 Object-Oriented Extensibility. The problems described above are exam-
ples of a more general problem with current mainstream object-oriented program-
ming languages. In these languages it is impossible to dynamically dispatch on
a class externally, that is without modifying the class in place. This restriction
makes it awkward at best, and error-prone at worst, to extend an existing class in
commonly desired ways. As we demonstrate, in current object-oriented languages
such class extensions are often impossible without advance planning by the original
programmer.

In MultiJava we lift this restriction of mainstream object-oriented programming
languages, allowing new methods to dynamically dispatch on existing classes with-
out modifying existing code. Multiple dispatch allows new methods to dispatch
on existing classes at argument positions other than the receiver, and open classes

2Wadler coined this term in a 1998 discussion on the Java Generics mailing list.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

4 · Curtis Clifton et al.

allow new methods to dispatch on existing classes at the receiver position. Mul-
tiJava is the first full-scale programming language to provide these features while
including modular, static typechecking and compilation.

The design of MultiJava satisfies the following goals and constraints:

— MultiJava provides complete backward compatibility with the extant Java
language. Code written in Java has the same semantics when compiled with a
Java compiler or a MultiJava compiler, including code that relies on Java’s static
overloading. It is possible to extend existing classes and override existing methods
using MultiJava’s new features.

— MultiJava retains Java’s encapsulation properties.
— The modular static typechecking and compilation properties of Java are main-

tained.
— To allow for wide use of code written in MultiJava, output of the MultiJava

compiler targets the standard Java Virtual Machine.
— For regular Java code the bytecode produced by the MultiJava compiler is

no less efficient than that generated by a standard Java compiler. For source code
using MultiJava’s multiple dispatch or open classes, the bytecode produced by the
MultiJava compiler has efficiency comparable to that produced by a standard Java
compiler for Java code that simulates these features.

1.2 Outline

Section 2 introduces and motivates the design of MultiJava. The language is a small
syntactic extension of Java, but it provides significant new opportunities for code
organization and reuse. Section 3 describes MultiJava’s static type system, which
safely augments Java’s modular (per-compilation-unit) typechecking. Section 4
sketches the translation of MultiJava source code into standard Java bytecode,
again on a per-compilation-unit basis as in Java. MultiJava is being used by others
in a variety of application domains; Section 5 describes the applications and pro-
gramming idioms in which MultiJava’s features have been successfully employed.
Section 6 describes an extension to MultiJava that was sparked in part by user
feedback. Section 7 presents some performance comparisons; Section 8 compares
MultiJava to related work; and Section 9 concludes with a discussion of future work.

2. LANGUAGE DESIGN AND MOTIVATION

In this section we describe the two main language features—multiple dispatch and
open classes—that allow MultiJava to solve the binary method and augmenting
method problems, and the more general extensibility problem, introduced in Sec-
tion 1.1. For each language feature we present a concrete example of the problem.
We motivate our design by demonstrating how a Java-based approach is inadequate.
Then we show how MultiJava provides a solution.

2.1 Multiple Dispatch

In Java [Arnold et al. 2000; Gosling et al. 2000], the method invoked by a call
depends on the runtime type of the receiver argument, but it does not depend on the
runtime types of any other arguments. This method selection scheme is known as
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 5

public class Rectangle extends Shape {
. . .

public Shape intersect(Rectangle r) {
/* efficient code for two Rectangles */

. . .

}
}

Fig. 2. An attempt at implementing Rectangle using static overloading

single dispatch. Single dispatch is also found in Smalltalk, C++, and C# [Goldberg
1984; Stroustrup 1997; Troelsen 2003]. In constrast, multiple dispatch—found in
Common Lisp, Dylan, and Cecil—selects the method invoked by a call based on the
runtime types of any specified subset of the arguments [Steele Jr. 1990; Paepcke
1993; Shalit 1997; Feinberg et al. 1997; Chambers 1992; 1997]. A method that
takes advantage of the multiple dispatch mechanism is called a multimethod. The
generalization of receiver-based dispatch to multiple dispatch provides a number of
advantages. For example, multimethods support safe covariant overriding in the
face of subtype polymorphism, providing a natural solution to the binary method
problem [Bruce et al. 1995; Castagna 1995]. More generally, multimethods are
useful whenever multiple class hierarchies must cooperate to implement a method’s
functionality. For example, the code for handling an event in an event-based system
depends on both which event occurs and which component is handling the event.

To motivate the addition of multiple dispatch in MultiJava, we consider the
binary method problem in more detail. We revisit the Shape example from Fig. 1
and consider extending its intersect method to handle pairs of rectangles. First
we describe the shortcomings of several approaches to performing this task in Java;
then we illustrate MultiJava’s solution.

2.1.1 Binary Methods in Java. There are several ways in Java by which one
might attempt to implement an intersect method for pairs of rectangles.

2.1.1.1 Static Overloading. The first way one might attempt to add Rectan-
gle’s intersect functionality in a Java program is shown in Fig. 2. Unfortunately,
this approach does not provide the desired semantics. In particular, the new in-
tersection method cannot safely override the original intersection method; the type
of the non-receiver argument cannot safely be changed from Shape to the subtype
Rectangle in the overriding method [Cardelli 1988]. Therefore, Java instead con-
siders Rectangle’s intersect method to statically overload Shape’s method. Each
method can be thought of as belonging to a distinct method family, as if they had
completely different names. A method family3 consists of a (possibly abstract) top
method, which overrides no other methods, and all of the methods that override
the top method. Java uses the name, number of arguments, and static argument
types of a method to determine the family to which it belongs. In our example,
the two intersect methods belong to different method families because they have

3In much of the literature on multiple dispatch languages, what we call a method family is referred
to as a “generic function”. We are using the term “method family” to avoid confusion with generic

types in Java 1.5.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

6 · Curtis Clifton et al.

Rectangle rect1, rect2;

Shape shape1, shape2;

rect1 = new Rectangle(. . .);

rect2 = new Rectangle(. . .);

shape1 = rect1;

shape2 = rect2;

Shape i1 = rect1.intersect(rect2);

Shape i2 = rect1.intersect(shape2);

Shape i3 = shape1.intersect(rect2);

Shape i4 = shape1.intersect(shape2);

Fig. 3. Client code of the intersect method family

different static argument types.
Each method call expression in a Java program can invoke methods of only a

single method family. The method family invoked by a method call is determined
statically based on the call’s name, number of arguments, and the static types of the
actual arguments. The method invoked within that method family is determined
at run time based on the dynamic type of the call’s receiver object. For example,
consider the client code in Fig. 3. Although the objects passed as arguments in the
four intersect calls are identical, these calls do not all invoke the same method.
In fact, only the first call will invoke Rectangle’s intersection method. The other
three calls will invoke Shape’s intersection method, because the static types of these
arguments cause Java to bind the calls to the method family introduced by Shape’s
intersect method. Likewise, the first call is statically bound to the method family
introduced by Rectangle’s intersect method. Therefore, new clients must choose
statically which of the two method families they wish to invoke, and existing clients
of Shape will never invoke the more efficient algorithm for two rectangles (unless
they are modified to do so).

2.1.1.2 Explicit Type Tests. In Java, one can solve this problem by performing
explicit runtime type tests with associated casts; we call this coding pattern a
typecase. For example, one could implement the Rectangle intersection method as
shown in Fig. 4.

This version of the Rectangle intersection method has the desired semantics. In
addition, since it takes an argument of type Shape, this method can safely override
Shape’s intersect method and is part of the same method family. All calls in
the example client code of Fig. 3 will now invoke Rectangle’s intersect method.
However, this code has several disadvantages. First, the programmer is explicitly
coding the selection of the appropriate intersection algorithm, a process that can
be tedious and error-prone. In addition, such code is not easily extensible. For
example, suppose a Triangle subclass of Shape is added to the program. If special
intersection behavior is required of a Rectangle and a Triangle, the above method
must be modified to add the new case. Further, the case for such a new subclass
must be carefully added in the appropriate place within the if expression, so that
it will not be superseded by an earlier case. Finally, this solution loses static type
safety. As a simple example, if the instanceof test in Fig. 4 accidentally tested
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 7

public class Rectangle extends Shape {
. . .
public Shape intersect(Shape s) {

if (s instanceof Rectangle) {
Rectangle r = (Rectangle) s;

/* efficient code for two Rectangles */

. . .

} else {
return super.intersect(s);

}
}

}

Fig. 4. An implementation of Rectangle using a typecase

whether s were an instance of Shape instead of Rectangle, the method would still
typecheck properly but would cause a runtime ClassCastException to occur if a
Shape instance were ever passed as the argument.

2.1.1.3 Double Dispatch. Another potential Java-based solution to the binary
method problem is to use double dispatching [Ingalls 1986]. Fig. 5 shows an im-
plementation of the intersect methods for Shape and Rectangle using double
dispatching. With this technique, instead of using an explicit instanceof test to
determine the runtime type of the argument s, as in the typecase solution, this in-
formation is obtained by performing a second call. This call is sent to the argument
s, but with the name of the call encoding the dynamic class of the original receiver.
Double dispatching reuses the language’s built-in method dispatching mechanism,
thereby retaining static type safety. However, double dispatching is even more te-
dious to implement by hand than typecases. Further, double dispatching requires
at least the root class of the hierarchy to be modified whenever a new subclass
is written. For example, the introduction of Rectangle in our example required
Shape to be augmented with an intersectRectangle method. This modification
is necessary even though there is no special intersect behavior desired for one
shape and one rectangle.

2.1.2 Multiple Dispatch in MultiJava. MultiJava allows programmers to write
multimethods, which are methods that can dynamically dispatch on other argu-
ments in addition to the receiver object. Multimethods provide a simple solu-
tion to the binary method problem that does not suffer from the problems of the
approaches described above. Multimethods also find more general applications;
Section 5 demonstrates that they are useful whenever multiple arguments must
cooperate to implement some functionality.

The syntax of our multimethod extension is specified in Fig. 6.4 Using multi-
methods, the definition of the Rectangle class can be changed to the one shown

4The grammar given in Fig. 6 extends the Java syntax given in the first 17 chapters of The

Java Language Specification [Gosling et al. 2000]. For standard Java nonterminals we just list

the new productions for MultiJava and indicate the existence of the other productions with an
ellipsis (. . .). Existing Java nonterminals bear superscript annotations giving the pertinent section

numbers from the Java specification.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

8 · Curtis Clifton et al.

public class Shape {
. . .
public Shape intersect(Shape s) {

return s.intersectShape(this);

}
protected Shape intersectShape(Shape s) {

. . .

}
protected Shape intersectRectangle(Rectangle r) {

/* no special code for one Shape and one Rectangle */

return intersectShape(r);

}
}
public class Rectangle extends Shape {

. . .

public Shape intersect(Shape s) {
return s.intersectRectangle(this);

}
protected Shape intersectRectangle(Rectangle r) {

/* efficient code for two Rectangles */

. . .

}
}

Fig. 5. Implementing binary methods using double-dispatching

FormalParameter8 .4 .1 :

Type4 .1 @ ReferenceType4 .3 VariableDeclaratorId8 .3

...

Fig. 6. Syntax extensions for MultiJava multimethods

public class Rectangle extends Shape {
. . .
public Shape intersect(Shape@Rectangle r) {

/* efficient code for two Rectangles */

. . .

}
}

Fig. 7. Multimethod version of Rectangle

in Fig. 7. This code is identical to the first solution attempt presented in Fig. 2,
except that the type declaration of the formal parameter r is Shape@Rectangle in-
stead of simply Rectangle. The “Shape” denotes the static type of the argument r.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 9

public class Circle extends Shape {
. . .
public Shape intersect(Shape s) {

. . .

}
public Shape intersect(Shape@Rectangle r) {

. . .

}
public Shape intersect(Shape@Circle c) {

. . .

}
}

Fig. 8. Another example of multimethods in MultiJava

Thus, Rectangle’s revised intersect method belongs to the same method family
as Shape’s intersect method from Fig. 1—the name, number of arguments, and
static argument types match. The “@Rectangle” indicates that, in addition to the
receiver, we wish to dynamically dispatch on the formal parameter r.5 We call
Rectangle the specializer of parameter r and say that r is specialized. (We refer to
a method without any specialized parameters as an unspecialized method.) As with
standard Java, the receiver is always dispatched upon. So Rectangle’s intersect
method will be invoked only if the dynamic class of the receiver is Rectangle or a
subclass—as with Java—and the dynamic class of the argument r is Rectangle or
a subclass. In all other cases, the intersect method from Shape will be invoked.

Any subset of a method’s arguments can be specialized. A class can declare
several methods with the same name and static argument types, with different
argument specializers. For example, a Circle class could be defined with a selection
of intersect methods as in Fig. 8. All these methods have static argument type
Shape, so they all are in the same method family: the one introduced by the
intersect method in the Shape class. However, they have different combinations
of specializers, causing them to apply in different runtime circumstances.

MultiJava’s multimethods have several advantages over the approaches described
in Section 2.1.1. First, the dispatch on non-receiver arguments is expressed simply
and declaratively. The various multimethods in a class can appear in any order,
and the language does the work of choosing the appropriate method based on the
runtime types of the arguments. Second, static type safety is retained. As will
be described in Section 3, this includes checking for common errors including in-
completeness and ambiguities among methods. Third, multimethods have all the
properties of regular methods. For example, a later subclass Square of Rectan-
gle can inherit Rectangle’s intersect multimethod, can optionally override that
method, and can add new multimethods to handle other shapes specially.

2.1.3 Multimethod Dispatch Semantics. MultiJava’s method invocation seman-
tics, like Java’s, can be broken down into two phases. The first, compile-time

5An alternative syntax would be to omit the Shape@ part and just infer dynamic dispatch based
on Rectangle being a subclass of Shape [Dutchyn et al. 2001]. However, this would conflict with

static overloading in Java. We rejected this approach in favor of retaining backward compatibility.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

10 · Curtis Clifton et al.

selection of the appropriate method family, is the same in both languages. For
a method call E0.I(E1, . . . , En), the method family being invoked is the unique
method family named I that is in scope and is most appropriate for the static
types of the Ei expressions [Gosling et al. 2000, pp. 346–355]. It is a compile-time
error if there is not exactly one such method family. By using the same algorithm for
compile-time selection of the appropriate method family, MultiJava retains Java’s
static overloading semantics.6

The second phase of method invocation is the dynamic selection of the appropri-
ate method from the statically determined method family. MultiJava’s semantics
is a natural generalization of Java’s second phase to handle dispatch on multiple
arguments. Invocations to a method family whose methods do not use specializers
will dispatch exactly as in Java. In MultiJava, dynamic dispatch for a method call
E0.I(E1, . . . , En):

(1) evaluates each Ei to some value vi,
(2) within the methods of the method family being invoked, finds the most-specific

applicable method, M , for the argument tuple (v0, . . . , vn), and
(3) invokes M if it exists, or else signals an error.

The notion of a most-specific applicable method relies on a number of auxiliary
definitions:

— First we define the natural subtyping relation for types. We say that a refer-
ence type D is a direct subtype of a reference type C if D extends or implements C.
The subtyping relation is then the reflexive, transitive closure of the direct subtyp-
ing relationship on reference types, unioned with the identity relation on primitive
types.

— Next we lift the notion of subtyping to tuples of types: a type tuple (S0, . . . , Sn)
subtypes another type tuple (T0, . . . , Tn) if for all 0 ≤ i ≤ n, it is the case that Si

subtypes Ti.
— Each argument tuple (v0, . . . , vn) has an associated argument type tuple

(D0, . . . , Dn), where for all 0 ≤ i ≤ n, Di is the dynamic type of vi.
— Each method also has an associated method type tuple formed from its receiver

type and the specializers of its parameters, or their static types if unspecialized.
Formally, a method with n parameters, I(P1 x1, . . . , Pn xn), and a receiver type
T0 has the method type tuple (T0, T1, . . . , Tn), where for i ∈ {1..n}:

– Ti = Pi if parameter i is unspecialized, and
– Ti = Di if Pi = Si@Di.

For example, the first method in Fig. 8 has the method type tuple (Circle, Shape),
while the second method has the method type tuple (Circle, Rectangle).

Now we define an argument tuple’s most-specific applicable method. This def-
inition relies on two notions. First, we say that a method M is applicable to
an argument tuple, (v0, . . . , vn), if the arguments’ type tuple is a subtype of M ’s
method type tuple. For example, for the method call

6In a language with multiple dispatch, static overloading becomes less necessary. Nevertheless,

MultiJava must retain static overloading for backward compatibility with Java.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 11

(Shape,Shape)

(Circle,Shape)

(Circle,Rectangle)(Circle,Circle)

(Rectangle,Rectangle)

Fig. 9. Partial order on method type tuples for the intersect method family

new Rectangle(. . .).intersect(new Rectangle(. . .)),

the argument type tuple is (Rectangle, Rectangle) and both the intersect method
in Shape (Fig. 1) and the one in Rectangle (Fig. 7) are applicable. Second, we say
that a method M1 is more specific than a method M2 if M1’s method type tuple
is a subtype of M2’s. For example, the intersect method in Rectangle is more
specific than the one in Shape.

Finally, the most-specific applicable method for a tuple of argument values is the
unique applicable method that is more specific than all other applicable methods. If
there are no applicable methods for a call, a message-not-understood error occurs. If
there are applicable methods but no unique most-specific one, a message-ambiguous
error occurs. (Static typechecking, discussed in Section 3, will detect and reject
method families that could potentially cause either sort of runtime error.)

As an example we consider the intersect method family introduced by Shape
in Fig. 1, and extended by Rectangle and Circle (in Figs. 7 and 8, respec-
tively). Fig. 9 shows the partial order on this method family that is induced
by the subtyping relationship on method type tuples. Each node in the figure
is the type tuple for a method in the method family. Using this figure, we demon-
strate MultiJava’s dynamic dispatch semantics by considering the method call
shape1.intersect(shape2) with varying runtime types for the arguments shape1
and shape2.

— If both shape1 and shape2 are Rectangles at run time, then the method
with type tuple (Rectangle,Rectangle), defined in the Rectangle class, is the
most-specific applicable one.

— If shape1 is a Circle and shape2 is a Shape, then the method with type
tuple (Circle,Shape), the first method defined in Circle, is the most-specific
applicable one.

— Finally, if shape1 is a Rectangle and shape2 is a Circle, then the top
method, with type tuple (Shape,Shape), is the most-specific applicable one.

2.1.3.1 Symmetric vs. Asymmetric Dispatch. Multiple dispatch is called sym-
metric if the rules for dynamic method lookup treat all dispatched arguments iden-
tically. Asymmetric multiple dispatch typically uses lexicographic ordering, where
earlier arguments are treated as more important, to select between equally specific
methods; a variant of this approach selects methods based partly on the textual

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

12 · Curtis Clifton et al.

ordering of their declarations. Symmetric multiple dispatch is used in Cecil, Dylan,
Kea [Mugridge et al. 1991], the λ&-calculus [Castagna et al. 1995; Castagna 1997],
ML≤ [Bourdoncle and Merz 1997], Tuple [Leavens and Millstein 1998], and Exten-
sible ML [Millstein et al. 2002]. The asymmetric semantics is used in Common Lisp
[Steele Jr. 1990; Paepcke 1993], Polyglot [Agrawal et al. 1991], Parasitic Methods
[Boyland and Castagna 1997], and Half & Half [Baumgartner et al. 2002].

MultiJava employs the symmetric semantics. This is seen in the definition of
subtyping for type tuples, which treats all argument positions uniformly. We think
that symmetric multiple dispatch is more intuitive and less error-prone, reporting all
possible ambiguities rather than silently resolving them in potentially unexpected
ways.

2.1.3.2 Handling null Arguments. Method calls in Java have an inherent asym-
metry in that null may be passed in a non-receiver argument position, but a null
value in the receiver position results in the familiar NullPointerException. We
considered throwing a similar exception in MultiJava if a null value appeared in
any specialized argument position. This would arguably be the most symmetric
treatment of the null value; however, this treatment would not be compatible with
existing Java code that allows null values as arguments. For compatibility, Multi-
Java instead treats a null argument as having a specific runtime type: the static
type of the corresponding parameter of the method family. For example, consider
the following code fragment:

Shape shape1 = new Circle(. . .);
Shape shape2 = null;
Shape result = shape1.intersect(shape2);

Because shape2 is null, the argument type tuple for the intersect method call
is (Circle,Shape). Thus, the first intersect method of Circle is invoked. This
semantics for null is consistent with what happens if a Java programmer uses
runtime type tests to manually dispatch on argument types, since null instanceof
T is false for all types T.

One consequence of MultiJava’s treatment of null is that unspecialized methods
must be concerned with possible null values for actual arguments. In his thesis,
Clifton discusses an extension to MultiJava that would allow null as a specializer
[2001, §6.1.6]. Such an extension would permit the declarative specification of
methods to handle null arguments.

2.1.4 Other Dispatch-Related Language Features. Experience using multiple dis-
patch in MultiJava prompted us to add two additional dispatch-related language
features. The first, resends, is analogous to super method calls in Java. The second
feature, value dispatching, extends the declarative benefits of multimethods from
the type domain to the value domain.

2.1.4.1 Resends. Inspired by a related construct in Cecil [Chambers 1997], Mul-
tiJava augments Java with a resend expression, which is similar to Java’s super
construct [Gosling et al. 2000, §15.12] but walks up the multimethod specificity
ordering. An invocation of resend from a (multi)method invokes the unique most-
specific (multi)method that is overridden by the resending method. (It is a compile-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 13

time error if such a method does not exist.) For example, a call this.resend(r)
from Rectangle’s intersect method in Fig. 7 would invoke Shape’s intersect
method from Fig. 1. Referring to Fig. 9, the resend follows the arrow from the
pair of Rectangles to the pair of Shapes.

In this example, the resend has the same semantics as super.intersect(r),
but that is not always the case. A super send will always invoke a method whose
receiver is a strict superclass of the current receiver (hence the super keyword
appears in the receiver position of the call). But with a resend the invoked
method may be less specific in some non-receiver argument position. For example, a
this.resend(r) call from Circle’s second intersect method in Fig. 8 invokes the
first method in that figure—following the arrow in Fig. 9 from (Circle,Rectangle)
to (Circle,Shape). On the other hand, a super.intersect(r) call from the same
method will invoke Shape’s intersect method.

To ensure that the unique most-specific method that is overridden by the resend-
ing one will be applicable to the resend’s arguments, MultiJava requires that the
receiver of a resend be this and that the ith argument to the resend be the ith
formal parameter of the enclosing method. Further, these formals must be declared
final in the enclosing method, to guarantee that they are not modified before the
call to resend. As a syntactic sugar, the target this may be omitted from a resend
invocation. That syntax is also used for a resend from a static method.

An alternative design for resends would be to modify the semantics of super
method calls instead of introducing a new keyword. An earlier version of MultiJava
did exactly that. That design is still backward compatible with Java, differing from
the semantics of super only where MultiJava’s explicit specializers are present.
However, that design has several drawbacks compared with the use of resend.
First, some users were confused by the generalized semantics for super, expecting it
to always invoke a method of the current receiver’s superclass. Second, the original
design could cause encapsulation problems when super was used with open classes
to invoke a method of a different method family than the caller [Clifton 2001,
p. 32]. The resend syntax solves this encapsulation problem by simply disallowing
invocations of other method families. Finally, retaining Java’s semantics for super
aids the migration of a program from Java to MultiJava. For example, in the
version of MultiJava with a modified super semantics, the target method of a
super send in a Java method could unexpectedly change if the calling method were
later converted into a set of multimethods.7

2.1.4.2 Value Dispatching. Multimethods are useful whenever a method family’s
behavior depends upon the particular runtime type of an argument. However,
a method family’s behavior sometimes depends upon an actual argument’s value
rather than its class. MultiJava’s multimethods generalize naturally to support a
common case of dispatch on values, in which the depended-upon values are compile-
time constants.

Fig. 10 illustrates how value dispatching is used to compute the Fibonacci num-

7A third alternative, which we have not explored extensively, is to overload Java’s super() syntax

for invoking superclass constructors. This would avoid introducing a new keyword and, because
the super() form can only appear in Java constructors, overloading it for resends would be un-

ambiguous. On the other hand, we suspect the use of a new keyword is less confusing.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

14 · Curtis Clifton et al.

public class Fib {
int fib(int@@0 i) { return 0; }
int fib(int@@1 i) { return 1; }
int fib(int i) { return fib(i-1) + fib(i-2); }

}

Fig. 10. Example of value dispatching

FormalParameter8 .4 .1 :

Type4 .1 @@ ConstantExpression15 .28 VariableDeclaratorId8 .3

...

Fig. 11. Syntax extensions for MultiJava value dispatching

bers. Value dispatch is denoted using @@ instead of @ on a specialized argument.
Fig. 11 gives the formal syntax. The first method in Fig. 10 is only applicable dy-
namically if the argument i has the value 0, and similarly for the second method.
The existing multimethod dispatch semantics generalizes seamlessly to handle value
dispatching by viewing each dispatched-upon value as a singleton concrete subclass
of its associated type. For example, the first fib method overrides the third one
because 0 is a “subclass” of int. Value dispatching is supported for the literals
of all of Java’s primitive types, as well as for literals of type java.lang.String.
Further, any compile-time constant expression as defined by Java can be used as
a value specializer, in addition to simple literals. Examples that make use of this
ability are described in Section 5.

Value dispatching as shown in the example is similar to Java’s existing switch
statement, but value dispatching has a number of advantages. First, any subset of a
method’s arguments can employ value dispatching, and a method can employ value
dispatching on some arguments and ordinary class dispatching on others. Second,
value dispatching is supported for all of Java’s primitive types, instead of just the
integral ones, as well as for java.lang.String. Finally, methods that employ value
dispatching are inherited by subclasses, providing more extensibility than switch.
For example, a subclass of Fib can inherit some of the fib methods, override others,
and add new multimethods handling other interesting integer values.

2.2 Open Classes

In addition to multimethods, MultiJava also supports open classes. An open class
is one to which new methods can be added without editing the class directly [Cham-
bers 1998; Millstein and Chambers 2002]. An open class allows a client to easily
customize the class’s interface to the needs of an application, without modifying
existing code. Open classes can be used to organize “cross-cutting” operations
separately from the classes to which they belong, a key feature of subject-oriented
and aspect-oriented programming [Harrison and Ossher 1993; Kiczales et al. 1997].
With open classes, object-oriented languages can support the addition of both new
subclasses and new methods to existing classes, solving the augmenting method
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 15

public class CircumferenceShape extends Shape {
public double circumference() {

return accumDistance(borderPoints());

}
}

Fig. 12. Adding new operations by subclassing

problem described in Section 1.1.2.
Similar to Section 2.1, we motivate the inclusion of open classes in MultiJava by

first considering Java-based solutions to the augmenting method problem.

2.2.1 Approaches to Solving the Augmenting Method Problem in Java. One so-
lution to the augmenting method problem is to add the new operation by writing
new subclasses for each of the existing classes. For example, Fig. 12 illustrates how
a circumference method is added to Shape. There are several drawbacks of this
approach. First, the new method does not update any existing Shape instances,
for example from a persistent store. Second, in general existing clients of Shape
must still be modified: any code that constructs Shape instances must be updated
to construct CircumferenceShape instances. Third, if CircumferenceShape in-
stances are passed to and later returned from existing code, their static type upon
return will be Shape (unless the existing code is modified), requiring runtime casts
to regain access to the circumference operation. Finally, this technique is tedious
and awkward when an entire class hierarchy must be updated with a new opera-
tion. For example, we must also declare a CircumferenceRectangle subclass of
Rectangle. CircumferenceRectangle must subclass from CircumferenceShape
in addition to Rectangle, in order for the new class’s circumference method
to override that of CircumferenceShape. Therefore, implementing Circumfer-
enceRectangle requires multiple inheritance of classes, which is not available in
Java.

A second approach is to use the Visitor design pattern [Gamma et al. 1995,
pp. 331–344], which directly addresses the problem of adding new functionality
to existing classes in a modular way. The basic idea is to reify each operation
into a class, thereby allowing operations to be structured in their own hierarchy.
For example, consider the version of the Shape class hierarchy in Fig. 13; here the
classes are augmented with an accept method according to the Visitor pattern.
Operations on shapes are structured in their own class hierarchy, each operation
becoming a subclass of an abstract ShapeVisitor class as shown in Fig. 14. The
client of an operation on shapes invokes the accept method of a shape, passing a
ShapeVisitor instance representing the operation to perform:

someShape.accept(new CircumferenceVisitor(. . .));

The accept method of each kind of shape uses double dispatching to invoke the
method of the visitor that is appropriate for that shape.

The main advantage of the Visitor pattern is that new operations can be added
modularly, without needing to edit any of the Shape subclasses: the programmer
simply defines a new ShapeVisitor subclass containing methods for visiting each
class in the Shape hierarchy. However, use of the Visitor pattern brings several

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

16 · Curtis Clifton et al.

public class Shape {
. . .
public void accept(ShapeVisitor v) {

v.visitShape(this);

}
}

public class Rectangle extends Shape {
. . .

public void accept(ShapeVisitor v) {
v.visitRectangle(this);

}
}

Fig. 13. Shape hierarchy with Visitor infrastructure

public abstract class ShapeVisitor {
. . .

public abstract void visitShape(Shape s);

public abstract void visitRectangle(Rectangle r);

/* abstract methods for other Shape subclasses */

. . .
}

public class CircumferenceVisitor extends ShapeVisitor {
private double result;

public double getResult() { return result; }
. . .

public void visitShape(Shape s) {
result = accumDistance(s.borderPoints());

}
public void visitRectangle(Rectangle s) {

result = 2.0 * (r.height() + r.width());

}
}

Fig. 14. Operation on Shapes implemented with Visitor

drawbacks, including the following, listed in order of increasing importance:

— The stylized double-dispatching code is tedious to write and prone to error.
— The need for the Visitor pattern must be anticipated ahead of time, when the

Shape class is implemented. For example, had the Shape hierarchy not been written
with an accept method, which allows visits from the ShapeVisitor hierarchy, it
would not have been possible to add the circumference functionality in a modular
way.

— Even with the accept method included, only visitors that require no addi-
tional arguments and that return no results can be programmed in a natural way;
for example, CircumferenceVisitor must use the result field and the getResult
accessor method to store and return the new operation’s result.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 17

— Although the Visitor pattern allows the addition of new operations modu-
larly, in so doing it gives up the ability to add new subclasses to existing Shape
classes in a modular way. For example, if a Circle subclass were introduced, the
ShapeVisitor class and all subclasses would have to be modified to contain a vis-
itCircle method. Thus, Visitor trades the non-modularity of the object-oriented
approach for the non-modularity of the procedural approach. Proposals have been
advanced for dealing with this well-known limitation [Krishnamurthi et al. 1998;
Martin 1998; Palsberg and Jay 1998; Nordberg 1998; Vlissides 1999; Zenger and
Odersky 2001; Grothoff 2003; Torgersen 2004]. However, most of these proposals
suffer from additional complexity (in the form of hand-coded typecases, more com-
plex class hierarchies, and factory methods) that make them even more difficult
and error-prone to use. Further, some of the proposals require a loss of static type
safety in the form of runtime casts or reflection in order to resolve Visitor’s limita-
tion. All of the proposals require advance planning by the developer of the code to
be extended.

2.2.2 Open Classes in MultiJava. The open class feature of MultiJava allows
a programmer to add new methods to existing classes without modifying existing
code and without breaking the encapsulation properties of Java. Contrary to the
Visitor pattern, it does this in a way that still allows new subclasses to be introduced
modularly. Thus MultiJava’s open classes solve the augmenting method problem.

2.2.2.1 Declaring and Invoking External Methods. The key new language fea-
ture involved in open classes is the external method declaration, whose syntax is
specified in Fig. 15. Using external methods, the functionality of the circumference-
calculating visitor from Fig. 14 can be written as in Fig. 16. The two external
methods in the figure belong to a new method family added to the shape hierarchy.
We call that method family external because its top method (the first one in the
figure) is an external method. Method families whose top method is not external,
including regular Java method families, are called internal.

As in Java methods, the bodies of external methods may use the keyword “this”
to reference the receiver argument. Similarly, field references and method calls can
implicitly target the receiver, for example in the calls to width() and height()
in Fig. 16. Finally, external methods may also be multimethods, by employing
MultiJava’s syntax for declaring argument specializers.

Clients invoke external method families exactly as they would the class’s original
methods. For example, the circumference method of a Shape instance, some-
Shape, is invoked by someShape.circumference(). This is allowed even if the
instance referred to by someShape was retrieved from a persistent database, or was
created by code that did not have access to the circumference methods. Code
can create and manipulate instances of classes without being aware of all exter-
nal method families that may have been added to the classes; only code wishing
to invoke or extend a particular external method family needs to be aware of its
declaration.

2.2.2.2 Scoping of External Method Families. To invoke or override an external
method family, client code first imports it using an extension of Java’s existing
import mechanism. For example,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

18 · Curtis Clifton et al.

(a) ExternalMethodDeclaration:

ExternalMethodHeader MethodBody8 .4 .5

ExternalMethodHeader :

MethodModifiers8 .4 .3
opt ResultType8 .4 ExternalMethodDeclarator Throws8 .4 .4

opt

ExternalMethodDeclarator :

ClassOrInterfaceType4 .3 . Identifier3 .8 (FormalParameterList8 .4 .1
opt)

(b) CompilationUnit7 .3 :

PackageDeclaration7 .4 .1
opt ImportDeclarations7 .5

opt TopLevelDeclarationsopt

TopLevelDeclarations:

TopLevelDeclaration

TopLevelDeclarations TopLevelDeclaration

TopLevelDeclaration:
TypeDeclaration7 .6

ExternalMethodDeclaration

Fig. 15. (a) Syntax for MultiJava external methods, and (b) syntax extensions to declare external

methods outside of class declarations

/* In file “circumference.java” */

package examples;

public double Shape.circumference() {
return accumDistance(borderPoints());

}

public double Rectangle.circumference() {
return 2.0 * (width() + height());

}

Fig. 16. Circumference-calculating method family using external methods

import examples.circumference;

will import the method family circumference from the package examples. Simi-
larly

import examples.*;

will implicitly import all the compilation units in the package examples, which
will make all accessible (e.g., public) types and method families in that package
available for use. Each compilation unit implicitly imports all the method families
in its package.

We call the set of methods and fields in a class the signature of that class. The
apparent signature of a class for a given client is the set of method families and
fields available to that client. The explicit importation of external method families
enables client code to manage the apparent signatures of the classes it manipulates.
Only clients that import the circumference method family will see the circum-
ference operation in the apparent signature of Shape. Other clients will not have
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 19

import examples.circumference;

public class Parallelogram extends Shape {
. . .

/* Implements circumference method family for Parallelograms */

public double circumference() {
return 2.0 * (base() + side());

}
}

Fig. 17. Example of modularly adding a new subtype to an existing type hierarchy

their apparent signatures for Shape polluted with this method family. Furthermore,
a compilation unit that did not import the existing circumference method family
could declare its own circumference method family without conflict. (As in Java,
a MultiJava compiler will signal a compile-time error if multiple applicable method
families are in scope at a call site.) The scoping of external general functions is one
of the ways that MultiJava’s open classes are more modular than open classes in
AspectJ [AspectJ Team 2004].

Java allows at most one public type (class or interface) declaration in a compila-
tion unit.8 This concession allows an implementation to find the file containing the
source code or bytecode for a type based on its name. In MultiJava we extend this
restriction in a natural way: each file may contain either one public type with as-
sociated methods, or a collection of external methods of the same name. Typically
these methods will all belong to a single method family, as in Fig. 16, but we also
allow the methods to belong to multiple, statically overloaded method families.

2.2.2.3 Inheritance of External Methods. Unlike the Visitor design pattern, open
classes still allow a new subclass of Shape to be added without changing any ex-
isting code. This capability arises from two important features of inheritance in
MultiJava. We use the Parallelogram class of Fig. 17 to explain these features.

First, in MultiJava a subclass can override any method in the apparent signature
of its superclass. That is, a new subclass can

—import an external method family that augments the superclass, and
—add an overriding method to the method family.

The compilation unit for Parallelogram does this by importing circumference
and declaring its own circumference method.

The second inheritance feature for external method families applies to clients of
a new subclass. A client of a new subclass can

—import an external method family that augments the superclass and
—invoke that method family on a subclass instance, regardless of whether the

method family was visible from the subclass’s declaration.

For example, suppose that a client program imported the area method family from

8Java’s restriction is actually somewhat more complex to account for its default access modifier,

which gives access to all other classes in the package [Gosling et al. 2000, §7.6]

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

20 · Curtis Clifton et al.

/* In file “area.java” */

public double Shape.area {
return sumTriangles(sort(borderPoints()));

}

public double Rectangle.area {
return width() * height();

}

Fig. 18. Example used to show method inheritance for open classes

Fig. 18. Even though the area method was not in the apparent signature of Shape
from Parallelogram’s perspective, the client can still execute the following code:

Parallelogram par = new Parallelogram(. . .);
double area = par.area();

Because the client imports the area method family and thus adds it to Shape’s
apparent signature, Parallelogram implicity inherits the Shape.area() method
from Fig. 18, so that method is invoked by the above code.

2.2.2.4 Encapsulation. MultiJava retains the same encapsulation properties as
Java [Gosling et al. 2000, §6.6]. An external method may access:

—public members of its receiver class, and
—non-private members of its receiver class if the external method is in the same

package as that class.

All other access to receiver class members is prohibited. Therefore, an external
method does not typically have access to the private members of its receiver class.
This does limit the expressiveness of external methods as compared with the or-
dinary methods of a class, but it allows us to retain Java’s strong encapsulation
properties. Providing private access to the receiver from an external method would
allow any client to access a class’s implementation simply by declaring an external
method for the class.

An external method may be declared with any one of the Java access modifiers.
For example, a helper method for a public external method may be declared private
and included in the same compilation unit as the public method. An external
method’s modifier is defined relative to the current compilation unit. For example:

— A private external method may only be invoked or overridden from within
the compilation unit in which it is declared.

— A protected external method may only be invoked or overridden by a class in
the same package in which the method is declared or by a class that is a subtype
of the method’s receiver.

2.3 Why Both?

It might seem that open classes are unnecessary given that MultiJava includes mul-
timethods. For example, one might construct a method family for calculating the
circumference of shapes using multimethods instead of open classes, as in Fig. 19.
With this definition a client can find the circumference of a shape with
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 21

public class CircumferenceCalculator {
public double circumferenceFor(Shape s) { . . . }
public double circumferenceFor(Shape@Rectangle r) { . . . }
public double circumferenceFor(Shape@Circle c) { . . . }

}

Fig. 19. noninvasive visitor using multimethods

double c = new CircumferenceCalculator().
circumferenceFor(someShape);

effectively adding an operation to the Shape hierarchy without using open classes.
We say that a method family coded in this fashion is a noninvasive visitor [Mill-

stein 2003]. The term “visitor” comes from the obvious similarity of this code to
the usual Visitor pattern. The code is noninvasive because it does not require any
changes to the shape classes (for example, to declare accept methods).

There are two problems with the noninvasive visitor approach, which are not
shared by MultiJava’s open classes. First, the invocation syntax for the cir-
cumferenceFor method family is different from the invocation syntax for method
families declared inside the original shape classes. The second problem is more
onerous. As with the Visitor pattern, noninvasive visitors lose the ability to add
new Shape subclasses in a modular way. New subclasses would require either a
non-modular editing of the CircumferenceCalculator class or the creation of a
subclass of CircumferenceCalculator, which has the same problems as described
for the subclassing solution to the augmenting method problem (see Section 2.2.1).
Therefore, noninvasive visitors do not fully solve the augmenting method problem.

3. STATIC TYPECHECKING

MultiJava extends Java’s static type system to accommodate multimethods and
external methods. This involves enhancements to the typechecking of method fam-
ilies. Importantly, MultiJava’s type system remains modular, obeying Java’s file-
by-file typechecking strategy. After more specifically defining the notion of modular
typechecking, we describe client- and implementation-side typechecking [Chambers
and Leavens 1995] of method families in MultiJava.

3.1 Modular Typechecking

We say that a type system is modular if the typechecking of each compilation unit
obeys the following two properties.

— First, each compilation unit can be typechecked given only the interfaces
of other compilation units, without requiring knowledge of their implementation
details. Informally, in Java a type’s interface information consists of the names of
its superclass and superinterfaces, the types of its accessible fields, and the headers,
but not bodies, of its accessible methods. Formal definitions have been provided by
others [Drossopoulou et al. 1999; Ancona et al. 2002]. For MultiJava, the interface
information of a compilation unit also includes the headers, but not bodies, of the
accessible external methods.

— Second, each compilation unit U can be typechecked given access only to the
interface information of compilation units that U explicitly depends upon. These are

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

22 · Curtis Clifton et al.

the interfaces that define types and method families referenced by U , as well as the
interfaces that define types and method families referenced by U ’s depended-upon
interfaces (recursively). Intuitively, the depended-upon interfaces are those whose
compilation units must exist in the program, in order for U to be well formed. For
example, Rectangle in Fig. 7 depends upon the interface of Shape in Fig. 1, because
Rectangle refers to Shape. However, Rectangle does not depend upon Circle in
Fig. 8 and so should not have to access Circle’s interface during typechecking.
Indeed, Circle may not even exist at the time that Rectangle is typechecked.
We say that the classes that are in interfaces upon which U depends are visible
during U ’s typechecking. We use a similar definition for the visibility of methods
and method families.

3.2 Client-side Typechecking

Client-side typechecking ensures the type correctness of each method call. Mul-
tiJava performs the same client-side typechecking as does Java, and the check is
naturally modular. Given a method call of the form E0.I(E1, . . . , En), the receiver
and arguments are typechecked, and their static types are used to find the unique
method family being invoked (among the many that may be statically overloaded).
If such a method family is found, then the method call is well typed and is assigned
the return type of the method family. Otherwise, an error occurs.

3.3 Implementation-side Typechecking

Implementation-side typechecking ensures the type correctness of the set of methods
belonging to each method family. (We ignore value dispatching here; it is addressed
in Section 3.4 below.)

3.3.1 Local Checks. First, there are checks on individual methods. As in Java,
a method must have modifiers that are compatible with those of the methods it
overrides, and the method’s body must match the declared return type. MultiJava
uses additional information in performing the latter check: when typechecking a
method body in MultiJava, we can safely assume that the arguments have the types
of their specializers, rather than simply their static types. Indeed, this is a major
part of the convenience of MultiJava. MultiJava also checks that each specializer is
a proper subtype of its static type. Because all of these checks are local to individual
methods, they are naturally modular.

3.3.2 Checks that Method Families are Properly Implemented. The remaining
part of implementation-side typechecking is responsible for ensuring that each
method family is properly implemented : for each valid type tuple to the method fam-
ily there must be a most-specific applicable method. A tuple of classes (C0, . . . , Cn)
is a valid type tuple for a method family with argument types (including the re-
ceiver) (T0, . . . , Tn) if each Ci is a concrete class that is a subtype of the associated
Ti. If a method family is properly implemented, then method lookup on that
family always succeeds at run time, with no message-not-understood or message-
ambiguous errors. For example, consider checking that the intersect method
family is properly implemented in the context of Figs. 1, 7, and 8. There are nine
valid type tuples to check — all possible pairs of Shapes, Rectangles, and Cir-
cles. Each of the nine argument tuples has a most-specific applicable method, so
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 23

the check succeeds.
Java’s type system already ensures that each method family is properly imple-

mented, in the absence of external methods and multimethods. For example, if
an abstract class C declares an abstract method m, then a concrete subclass of C
must provide a concrete overriding method of m, or else the typechecker signals an
error. Without such a concrete method, a NoSuchMethodException exception (the
equivalent of our message-not-understood error) could occur at run time. Java’s
check that method families are properly implemented is completely modular: type-
checking on each class ensures that the class has a most-specific method for each
method family to which it can be passed as a receiver argument. On the other
hand, MultiJava’s check as described so far is global: checking a method family f
requires access to all of f ’s methods and all valid type tuples.

To make MultiJava’s check modular, we divide it into checks on individual compi-
lation units. The typechecking on a compilation unit U must ensure that all visible
method families are properly implemented when considering visible types. That
is, all visible valid type tuples must have a visible most-specific applicable method
to invoke. Consider again checking that intersect is properly implemented in
Figs. 1, 7, and 8. Checks on the Shape class ensure that intersect has a most-
specific applicable method for a pair of Shapes, as Shape is the only visible class.
Checks on the Rectangle class ensure that intersect properly handles all pairs of
Shapes and Rectangles, but not Circles; the Circle class is not visible. Checks
on the Circle class ensure that intersect properly handles all pairs of Shapes,
Rectangles, and Circles.

Unfortunately, this natural scheme for making the check modular is insufficient:
there can be message-not-understood and message-ambiguous errors that elude
modular static detection [Cook 1991]. To address this problem, we impose some
requirements that, together with the modular check described above, are enough
to ensure that each method family is in fact properly implemented. These require-
ments are adapted from our previous theoretical work on modular typechecking for
multimethods and open classes [Millstein and Chambers 2002; Millstein et al. 2002;
Millstein 2003]. Below we briefly illustrate the challenges for modularly ensuring
that method families are properly implemented and show how the additional re-
quirements resolve the problems. More details on the requirements can be found
in the earlier papers, including a type soundness proof that validates their suffi-
ciency. The requirements are partitioned into those that ensure a method family is
complete (i.e., no message-not-understood errors) and those that ensure a method
family is unambiguous (i.e., no message-ambiguous errors); we discuss each kind in
turn.

3.3.2.1 Ensuring Completeness. Internal and external method families are sub-
ject to different completeness requirements. Fig. 20 illustrates a completeness prob-
lem for internal method families. Unlike our previous examples, in this figure Shape
is declared abstract. Checks that intersect is properly implemented from Shape’s
compilation unit succeed vacuously: because Shape is abstract, there are no valid
visible type tuples to check. The checks from Rectangle’s compilation unit succeed
because the single valid visible tuple, (Rectangle, Rectangle), has a most-specific
applicable method, and similarly for the checks from Circle’s compilation unit.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

24 · Curtis Clifton et al.

/* compilation unit “Shape” */

public abstract class Shape {
. . .

public abstract Shape intersect(Shape s);

}

/* compilation unit “Rectangle” */

public class Rectangle extends Shape {
. . .

public Shape intersect(Shape@Rectangle r) {
. . .

}
}

/* compilation unit “Circle” */

public class Circle extends Shape {
. . .
public Shape intersect(Shape@Circle c) {

. . .

}
}

Fig. 20. A completeness problem for multimethods

However, at run time a message-not-understood error will occur if intersect is
invoked on a pair of one Rectangle and one Circle, or vice versa.

To solve the problem, we require Rectangle to declare an unspecialized method
(i.e., a regular Java method) for intersect. This method ensures that Rectangle
implements intersect for any potentially unseen shape arguments, thereby han-
dling the incompleteness for a pair of one Rectangle and one Circle. Similarly,
Circle must declare an unspecialized method for intersect, thereby handling
the incompleteness for a pair of one Circle and one Rectangle. In general, the
requirement is as follows:

R1. If a concrete class C declares or inherits an internal method family
f , then C must declare or inherit a concrete unspecialized method for
f . Also, a method with specialized arguments (a multimethod) may not
be declared abstract.

Requiring a concrete unspecialized method is no extra burden on Java programmers,
as it is exactly the requirement that Java already enforces to ensure completeness
of internal method families. In our example, Java would require both Rectangle
and Circle to contain a concrete intersect method, because the one in Shape is
abstract. Requirement R1 also forbids multimethods from being abstract. This is
necessary to ensure that the required unspecialized method will be applicable for
all valid type tuples.9

Fig. 21 illustrates a completeness problem for external method families. Suppose
again that Shape is declared abstract. Because the compilation unit in Fig. 21
only depends upon the compilation units of Shape and Rectangle, circumference

9In Java, a concrete method is not applicable to a method call if there is an overriding abstract

method that is also applicable.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 25

/* compilation unit “circumference” */

package examples;

public abstract double Shape.circumference(); /* violates R2 */

public double Rectangle.circumference() {
return 2.0 * (width() + height());

}

Fig. 21. A completeness problem for open classes

appears complete: the single valid visible type tuple, (Rectangle), has a most-
specific applicable method. However, if Circle from Fig. 8 is also linked into the
program, we will get a message-not-understood error at run time if circumference
is ever invoked on a Circle instance.

Unlike the situation of internal method families, circumference is not visible
from Circle’s compilation unit (indeed, circumference may not even have been
written yet), so Circle cannot be required to declare a circumference method.
Instead, we require the compilation unit declaring circumference to declare a
concrete default method, which is a method that accepts any argument tuple of the
appropriate type. The requirement can be satisfied in Fig. 21 by making the first
method concrete; that method then handles the unseen Circle class. In general,
the requirement is as follows:

R2. The compilation unit that introduces an external method family f
must declare a concrete default method for f . Also, an external method
may not be declared abstract.

Requirement R2 has the effect of treating abstract classes as if they were con-
crete for the purposes of external method families. The requirement therefore does
limit the expressiveness of external method families, sometimes requiring default
methods that are unnecessary or unnatural. Of course, the requirement still allows
MultiJava to be strictly more expressive than Java, which lacks external methods
altogether. Analogous with requirement R1, external methods are forbidden from
being abstract to ensure that the required default method is always applicable.

3.3.2.2 Ensuring the Absence of Ambiguity. Fig. 22 illustrates an ambiguity
problem for multimethods. Both methods in the figure belong to the intersect
method family defined by the top method in Fig. 1. Because neither the “Rectangle”
nor “intersect” compilation unit depends upon the other, each unit successfully
typechecks. In particular, intersect appears to be properly implemented from
each compilation unit. However, at run time a message-ambiguous error will occur
if intersect is invoked on a pair of one Rectangle and one Circle: both methods
in the figure are applicable, but neither is more specific than the other.

To handle this problem we impose a requirement that disallows the second in-
tersect method in Fig. 22 from being written, thereby resolving the potential
ambiguity. The requirement is as follows:

R3. An external method must be declared in the same compilation
unit as any methods that it overrides, and those methods must also be
external.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

26 · Curtis Clifton et al.

/* compilation unit “Shape” as in Fig. 1 */

/* compilation unit “Rectangle” */

public class Rectangle extends Shape {
. . .

public Shape intersect(Shape s) {
. . .

}
}

/* compilation unit “intersect” */

public Shape Shape.intersect(Shape@Circle c) { /* violates R3 */

. . .

}

Fig. 22. An ambiguity problem

/* compilation unit “circumference” */

package examples;

public double Shape.circumference(){
. . .

}

public double Rectangle.circumference() { /* violates R4 */

. . .

}

public double Rhombus.circumference() { /* violates R4 */

. . .
}

/* compilation unit “Square” */

public class Square implements Rectangle, Rhombus {
. . .

}

Fig. 23. An ambiguity problem from multiple inheritance

The second intersect method in our example violates the requirement, because
intersect’s top method is declared in Shape’s compilation unit.

Requirement R3 is no burden on the traditional Java style, since it only affects
external methods. Ordinary Java-style overriding is allowed, as illustrated by the
first intersect method in Fig. 22, and regular methods may still belong to external
method families, as in Fig. 17. The requirement does restrict the external methods
that may be written. First, an external method must belong to an external method
family. Second, all external methods of a given method family must be declared
in the same compilation unit. The requirement ensures that if two methods are
in compilation units such that neither unit depends upon the other, then the two
methods will be applicable to disjoint sets of valid type tuples. Therefore, the two
methods cannot be ambiguous with one another.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 27

Finally, Fig. 23 illustrates an ambiguity problem in the presence of Java’s inter-
faces, which support multiple inheritance. For this example, suppose that Shape is
an interface, as are its subinterfaces Rectangle and Rhombus. Because neither of
the two compilation units in the figure depends upon the other, the ambiguity of
circumference for Square eludes modular static detection. To handle this prob-
lem, we disallow dynamic dispatch on interfaces, either as the receiver or as an
argument:

R4. If an external method’s receiver is an interface, then the method
must be its method family’s top method. Also, an interface may not be
used as a specializer.

In Fig. 23, the first circumference method is allowed by the requirement because
it is the top method, while the other two methods are disallowed. The top method
may safely have an interface for a receiver because in that case the receiver is not
being dynamically dispatched upon: the top method is only invoked if there is
no applicable, more-specific method. Requirement R4 naturally generalizes Java’s
requirement that an interface contain no concrete methods, which prevents interface
types from affecting dynamic dispatch.10

3.4 Implementation-side Typechecking for Value Dispatching

We generalize implementation-side typechecking to support value dispatching. The
local checks on individual methods, as described in Section 3.3.1, are augmented
to check that each value specializer is a compile-time constant expression that
has the argument’s associated static type. The checks that a method family is
properly implemented are augmented by treating each value used as a specializer
as a singleton concrete subclass of its associated type. For example, during checks
on fib in Fig. 10, the values 0 and 1 are checked to have a most-specific applicable
method. This checking ensures, among other things, that an ambiguity will be
signaled statically if multiple fib methods dispatch on 0.

4. MODULAR COMPILATION

The compilation strategy for MultiJava generates standard Java bytecode and re-
tains the modular compilation and efficient single dispatch of existing Java code.
Additional runtime cost for MultiJava’s new features is incurred only where they
are used; code that does not make use of multiple dispatch or open classes compiles
and runs exactly as in Java.

We have implemented our modular compilation strategy (as well as the modular
typechecking strategy described in the previous section) in mjc, a compiler for
MultiJava. The mjc compiler is built as an extension to the Kopi compiler, an
open-source Java compiler [Kopi 2004].

The next subsection describes the compilation strategy for multimethods, fo-
cusing on just internal method families. Section 4.2 describes the translation and
invocation of external method families. Section 4.3 describes the compilation of

10The original design of MultiJava did not permit any external methods whose receiver was of an
interface type. This restriction was relaxed to that of R4 based on user feedback as discussed in

Section 5.2.1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

28 · Curtis Clifton et al.

super calls and resends. Finally, Section 4.4 discusses some miscellaneous compi-
lation issues. Although mjc outputs Java bytecode, to simplify discussion we will
describe compilation as if translating to Java source code.

4.1 Compiling Multimethods

Multimethods in MultiJava are compiled in the style of encapsulated multimeth-
ods [Bruce et al. 1995], though the complexity of this style is hidden from the
programmer.

All the multimethods of a given internal method family within a single class
are grouped in a dispatcher method. Consider the set of intersect methods in
Fig. 24a. For such a set of multimethods, the MultiJava compiler produces a
dispatcher method, as shown in Fig. 24b, that selects the appropriate multimethod
at run time. The dispatcher method internally does the necessary checks on the
specialized arguments, using cascaded sequences of instanceof tests (or equality
comparisons, for value dispatching). The multimethod bodies are translated into a
set of private methods.

For the set of multimethods compiled into a dispatcher method, the dynamic
dispatch tests are ordered to ensure that the most-specific multimethod is found.
If one of the multimethods in the set is applicable to some argument tuple, then
the typechecking restrictions ensure that there will always be a single most-specific
check which succeeds. Moreover, the multimethod body selected by this check will
be more specific than any applicable superclass method: the subclass method is
always more specific in the receiver position than any superclass method.

If every multimethod compiled into a dispatcher method has a specializer on
some argument position, then it is possible that none of the checks will match
the runtime arguments. In this case, a final clause passes the dispatch on to the
superclass, as shown in Fig. 24b. Eventually a class must be reached that includes
an unspecialized method, as required by typechecking requirement R1.

Compiling Java single dispatch methods is just a special case of these rules. Such
a method does not dispatch on any arguments and has no other local multimethods
overriding it, and so its body performs no runtime type dispatch on any arguments;
it reduces to just the original method body.

An invocation of an internal method family is compiled exactly as in Java. Clients
are insensitive to whether or not the invoked method family performs any multiple
dispatch. Thus, the set of arguments on which a method dispatches can be changed
without needing to retypecheck or recompile clients.

There is no efficiency penalty for Java code compiled with the MultiJava compiler.
Only methods that dispatch on multiple arguments get compiled with typecases.
A Java program would likely use typecases whenever a MultiJava program would
use multimethods anyway. If a Java program used double dispatching to simulate
multimethods, then it might be possible to generate more efficient code than Mul-
tiJava (two constant-time dispatches), but double dispatching in Java sacrifices the
ability to add new subclasses modularly.

4.2 Compiling External Method Families

The external method families introduced by MultiJava’s open class mechanism are
compiled using anchor classes, generated classes that represent the external method
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 29

(a) /* Implements Square in MultiJava */

public class Square extends Rectangle {
. . .

public Shape intersect(Shape@Rectangle r) {
/* method 1 body */

. . .
}

public Shape intersect(Shape@Square s) {
/* method 2 body */

. . .
}

}

(b) /* Translation of Square to Java */

public class Square extends Rectangle {
. . .

/* Generated “dispatcher method” */

public Shape intersect(Shape sh) {
if (sh instanceof Square) {

return intersect$body2((Square) sh);

} else if (sh instanceof Rectangle) {
return intersect$body1((Rectangle) sh);

} else {
return super.intersect(sh);

}
}

private Shape intersect$body1(Rectangle r) {
/* method 1 body */

. . .
}

private Shape intersect$body2(Square s) {
/* method 2 body */

. . .
}

}

Fig. 24. Example showing (a) multimethods in MultiJava, and (b) their translation to Java

family. The anchor classes allow external methods to be compiled apart from the
types that they augment. An anchor class has a single static field, function, that
contains a dispatcher object. During an invocation of the external method family,
the dispatcher object is responsible for invoking one of the method family’s methods
based on MultiJava’s dynamic dispatch semantics. The dispatcher object is a Java
implementation of a first-class function; it allows the method family’s methods to
be stored in a field. We will see below how this helps in implementing overriding
methods.

As an example, Fig. 25a introduces the rotate external method family. Fig. 25b
shows the anchor class generated by our compiler. The anchor class’s access level
is based on the declared access modifier of the external method family. The anchor
class declares nested types representing the dispatcher object and its interface. As

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

30 · Curtis Clifton et al.

(a) /* Implements rotate in MultiJava */

public Shape Shape.rotate(float a) { /* method 1 body */ . . . }
public Shape Rectangle.rotate(float a) { /* method 2 body */ . . . }
public Shape Square.rotate(float a) { /* method 3 body */ . . . }

(b) /* Translation of rotate to Java */

public class rotate$anchor {

public static signature function;

static {
synchronized (rotate$anchor.class) {

function = new dispatcher();

}
}

public interface signature {
Shape apply(Shape this$, float a);

}

private static class dispatcher implements signature {
public Shape apply(Shape this$, float a) {

if (this$ instanceof Square) {
return rotate$body((Square) this$, a);

} else if (this$ instanceof Rectangle) {
return rotate$body((Rectangle) this$, a);

} else {
return rotate$body(this$, a);

}
}

private static Shape rotate$body(Shape this$, float a) {
/* method 1 body, substituting this$ for this */

. . .
}

private static Shape rotate$body(Rectangle this$, float a) {
/* method 2 body, substituting this$ for this */

. . .
}

private static Shape rotate$body(Square this$, float a) {
/* method 3 body, substituting this$ for this */

. . .
}

}
}

Fig. 25. Example showing (a) an external method family in MultiJava, and (b) its translation to
Java

with internal method families, dispatching is performed using cascaded instanceof
tests. Since the methods do not appear in the same class as their logical receivers,
the receiver argument of the call is passed as an extra argument.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 31

To invoke an external method family, the compiled code for a client loads the
dispatcher object from the anchor class’s function field and invokes its apply
method. So the MultiJava code:

Shape shape1 = new Rectangle();
shape1.rotate(90.0);

is translated to:

Shape shape1 = new Rectangle();
rotate$anchor.function.apply(shape1, 90.0);

By typechecking requirement R3, all external methods will be declared in the
same compilation unit as their top method. However, as described earlier, Multi-
Java allows a class declaration to contain regular Java-style methods that belong to
external method families. This idiom allows a new subclass to be given appropriate
overriding methods for any existing external method families. To compile these
methods, MultiJava uses the Chain of Responsibility pattern [Gamma et al. 1995,
pp. 223–232].

For example, Fig. 26a shows a class, Oval, containing a method that belongs to
the external method family rotate. Fig. 26b shows the results of compiling Oval.
A new nested dispatcher class, Oval.dispatcher, is created that implements the
same interface as does the original dispatcher in rotate’s anchor class. The new
dispatcher’s apply method checks whether the runtime arguments should dispatch
to the local rotate method. If there were other rotate methods declared in Oval,
they would be compiled into this apply method as well. If no local method is
applicable, the apply method of the dispatcher’s oldFunction field is invoked.

For this compilation strategy to work properly, the new dispatcher’s oldFunction
field must point to the original dispatcher object, and the function field of rotate’s
anchor class must be mutated to point to the new dispatcher object. Both of these
tasks are accomplished during static initialization of Oval, as shown in the figure.
These links from the function field to the new dispatcher object and from the
oldFunction field to the original dispatcher object form the chain of responsibility.
When the method family is invoked, the apply method of the new dispatcher object
is called. It checks if any of its methods are applicable. If none are, it calls the
apply method of the original dispatcher object.

This chain-of-responsibility compilation strategy works when a single subclass
adds methods to the external method family, or when several subclasses do so. Each
dispatcher object checks for the applicability of its methods and, if no applicable
methods are found, passes control on to the next dispatcher in the chain. Eventually
dispatching either finds a dispatcher object with an applicable method, or the search
ends at the initial dispatcher object installed when the method family was created.
Typechecking requirement R2 ensures that this last dispatcher object on the chain
includes a default method that handles all arguments, guaranteeing that dispatching
terminates successfully.

Java ensures that superclasses are initialized before subclasses [Gosling et al.
2000, §12.4], so dispatcher objects for superclasses will always be put onto the
chain earlier than subclass dispatchers. Therefore, subclass dispatchers will be
invoked before superclass dispatchers, as desired. Two unrelated classes might

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

32 · Curtis Clifton et al.

(a) /* Implements Oval in MultiJava */

public class Oval extends Shape {
. . .

public Shape rotate(float a) { /* method 1 body */ . . . }
}

(b) /* Translation of Oval to Java */

public class Oval extends Shape {
. . .

/* static initializer */

static {
synchronized (rotate$anchor.class) {

rotate$anchor.function = new dispatcher(rotate$anchor.function);

}
}

private static class dispatcher implements rotate$anchor.signature {
public rotate$anchor.signature oldFunction;

public dispatcher(rotate$anchor.signature oldF) {
oldFunction = oldF;

}
public Shape apply(Shape this$, float a) {

if (this$ instanceof Oval) {
return rotate$body((Oval) this$, a);

} else {
return oldFunction.apply(this$, a);

}
}
private static Shape rotate$body(Oval this$, float a) {

/* method 1 body, substituting this$ for this */

. . .
}

}
}

Fig. 26. Example showing (a) a class extending an external method family, and (b) its translation

to Java

have their dispatchers put onto the chain in either order, but this is fine because
the dispatching semantics ensures that the methods of such unrelated classes are
applicable to disjoint sets of valid type tuples, so at most one class’s methods could
apply to a given invocation.

There is a degenerate case where a superclass static initializer instantiates a
subclass and invokes an external method family on the subclass instance. In our
running example, this would correspond to the static initializer for Shape includ-
ing the code new Oval(...).rotate(90.0). In this case, with the compilation
strategy shown thus far, it would be possible to invoke the external method family
before Oval’s static initializer had run. We must ensure that the chain of respon-
sibility is updated before any instances of Oval are available to be dispatched on.
The actual implementation updates the chain of responsibility at the beginning of
each of Oval’s constructors (with appropriate guards against multiple updates).
We omit these details from the figures for clarity. Also omitted for clarity are lock-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 33

ing mechanisms to ensure thread safety for updates and accesses of the chain of
responsibility. For example, all accesses to a function field are synchronized on the
Class object of the anchor class.

4.3 Compiling Super and Resend

The compilation of super calls and resends presents interesting challenges. Because
of the various compilation tactics for method definitions, the compiled super call
or resend may originate in:

—a nested class of an anchor class (for external methods of an external method
family),

—a nested class of a regular Java class (for Java-style methods of an external
method family), or

—in a regular Java class (for Java-style methods of an internal method family).

The target method of the invocation may appear in the same variety of locations.
Thus there are a number of permutations of caller and target method locations.
When the target method belongs to an internal method family we use the Java
virtual machine’s invokespecial bytecode, just as is done to compile super calls
in Java [Lindholm and Yellin 2000, §6]. When the target method belongs to an
external method family we use the functions stored in the chain of responsibility.
In some cases the generated code must use synthetic methods that direct execution
to the appropriate nested dispatcher class or must skip functions in the chain of
responsibility. These corner cases are quite mundane; the details are available in
Clifton’s thesis [Clifton 2001, §3.4].

4.4 Other Compilation Issues

We conclude our discussion of the compilation strategy for MultiJava by addressing
three additional interesting issues.

4.4.1 Pleomorphic Methods. In Java, it is possible for a method to simultane-
ously belong to more than one method family. For example, as shown in Fig. 27, a
concrete method may both override a superclass method and implement an inter-
face method. We say that such a method is pleomorphic.11 Because of Java’s single
inheritance, only one of the method families to which a pleomorphic method be-
longs will have a concrete top method. The other method families must be declared
in interfaces.

It is possible that a particular client only sees one of the method families con-
taining a pleomorphic method. For example, in the code:

MetallicAppearance ma;
. . .
ma.brush();

the client can only see the method family declared in the interface MetallicAp-
pearance. In Java, an invokeinterface instruction is used if the client-visible

11The term “pleomorphic” comes from crystalography, where it means “having more than one

lattice structure.”

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

34 · Curtis Clifton et al.

public class Painter {
public void brush() { . . . }

}

public interface MetallicAppearance {
void brush();

}

public class MetallicPainter extends Painter implements MetallicAppearance {
/* Overides Painter.brush() and implements MetallicAppearance.brush() */

public void brush() { . . . }
}

Fig. 27. A pleomorphic method, belonging to more than one method family

method family is declared in an interface; otherwise, an invokevirtual instruc-
tion is used. Except for the instruction used, the calling convention is the same
for either sort of method family, and either sort of call can resolve to the same
pleomorphic method at run time [Lindholm and Yellin 2000, §6].

In MultiJava, pleomorphic methods are slightly more complicated. MultiJava’s
type system, like Java’s, ensures that only one of the method families to which a
pleomorphic method belongs will have a concrete top method; the other method
families must be declared in interfaces. However, in MultiJava the concrete top
method may be an external method. As we have discussed, external method families
use a different calling convention than do internal method families. For a client that
only sees the external method family, the pleomorphic method must appear in the
external method family’s chain of responsibility. But for a client that only sees the
method family declared in an interface, the pleomorphic method must be defined
inside the receiver class.

Our solution to this dilemma is to compile the pleomorphic method according
to the strategy for external method families. Additionally, we create a redirector
method within the receiver class that directs an invocation of the internal method
family on that class into the external method family. Clifton’s thesis describes this
technique in more detail [Clifton 2001, §3.3].

4.4.2 Private External Methods. A second issue that arose during the imple-
mentation of mjc was the handling of private external methods. MultiJava allows a
compilation unit declaring a public external method families to also declare private
helper methods. A sample of a compilation unit with a private external method
is given in Fig. 28. Our compilation strategy is to make the anchor class of the
private external method be a nested class of the regular anchor class. For the code
in the figure a swap$anchor nested class is created inside the sort$anchor class.
This enforces the access semantics for the private external method and avoids a
name clash should a non-private external method family named swap be declared
in the same package.

4.4.3 Multimethod and External Method Signatures in Bytecode. A third issue
that arose during our implementation was the need to read MultiJava-specific fea-
tures from bytecode. This is necessary to allow compilation units to be safely
compiled given only the bytecode, but not the source, of other compilation units
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 35

/* In file “sort.java” */

public void List.sort() {
. . .

this.swap(i,j);

. . .
}

/* private external helper method */

private void List.swap(int i, int j) {
Object temp = get(i);

set(i, get(j));

set(j, temp);

}

Fig. 28. Compilation unit with a private external method

that are depended upon. Our solution to this problem is to use the capability of
adding custom attributes to bytecode [Lindholm and Yellin 2000, §4.7.1]. We use
attributes to encode the signatures of all the local methods of an external method
family in the bytecode for the method family’s anchor class. Similarly, we use
attributes to encode the signatures of all multimethods (that are not also exter-
nal methods) in their receiver class’s bytecode. These attribute values are easily
read from bytecode, allowing a MultiJava compiler to efficiently retrieve this infor-
mation. Using these attributes does not cause any incompatibilities with existing
virtual machine implementations; such implementations must ignore attributes that
are not recognized.

5. APPLICATIONS

MultiJava has been used by others in the implementation of several applications.
This section illustrates the ways in which MultiJava’s features have been employed
and reports on user feedback about the benefits and limitations of the language. The
applications span several domains. First, MultiJava has been used to implement
reliable ubiquitous computing systems. Versions of the following systems have been
implemented at least in part using MultiJava:

—Guide [Philipose et al. 2004] is a system for inferring the presence and nature of
human activities in indoor spaces.

—Labscape [Arnstein et al. 2002] is a ubiquitous computing environment for cell
biology laboratories.

—The Location Stack [Hightower et al. 2002] is a framework for combining and
representing measurements from a heterogeneous network of sensors that track
the locations of objects in an environment.

Second, MultiJava has been used to implement two compilers. Hydro is a domain-
specific language for XML data processing, and HydroJ [Lee et al. 2003] is an
extension to Java supporting Hydro’s features.

Finally, MultiJava was used to implement a graphical user interface (GUI) for
manipulating a reconfigurable chip that performs machine learning tasks [Bridges
et al. 2003].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

36 · Curtis Clifton et al.

class Measurement {
boolean equals(Object o) {

if (o instanceof Measurement) {
Measurement m = (Measurement) o;

/* check equality of two Measurements */

. . .

} else {
return false;

}
}

}

class Measurement {
boolean equals(Object@Measurement m) {

/* check equality of two Measurements */

. . .

}
}

(a) (b)

Fig. 29. (a) Binary methods in Java, and (b) in MultiJava

5.1 Multimethods

Our users employ multimethods in several ways. As expected, multimethods are
used to solve the binary method problem. Multimethods have also proven use-
ful in implementing event handlers, performing tree traversals, and in finite-state
machines. The following sections detail these uses.

5.1.1 Binary Methods. One of the simplest uses of multimethods is in the im-
plementation of binary methods. In Java, all classes have at least one binary
operation, the equals method family inherited from java.lang.Object. Fig. 29a
shows a common idiom for implementing equals methods in Java, and Fig. 29b
shows the MultiJava equivalent. Measurement is the base class for sensor measure-
ments in the Location Stack. Multimethods are used in this way to implement
equals in this and many other classes of the Location Stack, as well as in the im-
plementations of the Hydro and HydroJ compilers. Hydro and HydroJ also include
an expressive sublanguage for pattern matching on XML data. A variant of the
MultiJava style shown in Fig. 29b is used in the Hydro and HydroJ compilers to
implement binary methods on patterns, including pattern specificity checking and
pattern intersection.

Even on the small example in the figure, the MultiJava version enjoys several
advantages. The method in the MultiJava version declaratively expresses its dis-
patching behavior in its header. This allows programmers to more easily under-
stand the functionality and allows MultiJava to check statically for incompleteness
and ambiguities. The MultiJava version also allows functionality to be more easily
inherited. For example, the else case in Fig. 29a is not needed in the Multi-
Java version. Instead, MultiJava’s dispatching semantics ensures that the equals
method in java.lang.Object will be invoked whenever the receiver is a Measure-
ment instance (or a subclass) but the argument is not. Because Object’s equals
method implements pointer equality, the simplified code has the same semantics as
the original. In contrast, the Java version of Measurement’s equals method must
always include an else case to ensure completeness.

5.1.2 Event Dispatching. Many kinds of applications are naturally structured
in an event-based style. In this style, components do not communicate by directly
sending messages to one another. Instead, each component is able to announce
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 37

abstract class Component {
abstract void handleEvent(Event e);

}

Fig. 30. Base class of components in an event-based system

a set of events. Separately, other components can register to receive notification
whenever a certain event is announced by providing a handler procedure for the
event. When an event is announced, the system invokes all the handlers that are
associated with that event. The canonical example of an event-based system is a
GUI. Events are announced in response to user actions (e.g., clicking a button),
and these events trigger the appropriate actions of components (e.g., updating the
display). Java’s Abstract Windowing Toolkit (AWT) is a library for building GUIs
that employs the event-based style.

Several of the projects in our user community employ event-based architectures.
The GUI for the reconfigurable chip is built on top of AWT. The event-based style
is also used by all of the ubiquitous systems described earlier. Each of those systems
is built on top of either one.world [Grimm et al. 2001] or Rain [Rain 2004], which
are event-based libraries for facilitating the creation of ubiquitous computing appli-
cations in Java. In the ubiquitous systems, extensibility is at a premium: it must
be possible for new components to easily join and leave the system dynamically.
The event-based style facilitates this extensibility by keeping components loosely
coupled, since components communicate only indirectly through events.

5.1.2.1 Basic Event Dispatching. In the context of an object-oriented language
like Java, an event-based system typically includes an abstract class or interface
that defines the required functionality of all components, as shown in Fig. 30.
Each component is a concrete subclass of Component, and each event is similarly
a subclass of an abstract Event class. A component’s handleEvent method is its
event handler: when an event occurs, the system notifies those components that
have registered for the event by calling their handleEvent methods. The object
representing the event is passed as an argument. This structure is used by both
the one.world and Rain libraries.

The handleEvent operation is a natural application for multiple dispatch in Mul-
tiJava. The functionality for handling an event depends both on which component
is handling the event and on which event has been announced, but Java only al-
lows one of these hierarchies to be dispatched upon. Therefore, programmers must
manually dispatch on the other hierarchy, usually via runtime type tests and casts.
An example of Java and MultiJava event handlers in a hypothetical GUI for a text
editor is shown in Fig. 31.

The benefits of MultiJava illustrated for binary methods are accrued to an even
greater extent for event handling. MultiJava allows each conceptual handler to be
encapsulated as its own method, rather than buried in an if case of one monolithic
method. Users report that this style of implementing handlers exactly matches
their high-level view of a component as containing a set of handlers, each handling
a particular event. The header of each multimethod characterizes the conditions
under which that handler will be invoked, and static checking ensures that there

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

38 · Curtis Clifton et al.

class EditorGUI extends Component {
void handleEvent(Event e) {

if (e instanceof Open) {
Open o = (Open) e;

/* open a file */

. . .

} else if (e instanceof Save) {
Save s = (Save) e;

/* save the currently opened file */

. . .

} else if (e instanceof Quit) {
Quit q = (Quit) e;

/* quit the application */

. . .
} else {

/* handle unexpected events */

. . .

}
}

}

class EditorGUI extends Component {
void handleEvent(Event@Open o) {

/* open a file */

. . .

}
void handleEvent(Event@Save s) {

/* save the currently opened file */

. . .
}
void handleEvent(Event@Quit q) {

/* quit the application */

. . .

}
void handleEvent(Event e) {

/* handle unexpected events */

. . .

}
}

(a) (b)

Fig. 31. (a) Event handling in Java, and (b) in MultiJava

is a most-specific applicable handler for each possible event. As a simple example
of static checking, the lack of a default handler accepting any Event would signal
a static completeness error in MultiJava. In contrast, the Java version would com-
pile without error but fail dynamically in unexpected ways if the final else case
were missing. Users report such errors to be common, particularly in the ubiq-
uitous computing context, where the system can easily become misconfigured as
components enter and exit.

The MultiJava style also had the unexpected effect of encouraging programmers
to write better documentation. For example, “Handles events” is the typical com-
ment for a monolithic handleEvent method. A user reported that MultiJava made
it natural for him to instead document the actual behavior of each handler in com-
ments. Such documentation can then be displayed by mjdoc, an HTML-based
documentation tool for MultiJava programs developed by David Cok, which is sim-
ilar to Java’s javadoc tool. (The mjdoc tool was developed based on user requests
for such a facility.)

5.1.2.2 Event Dispatching in Practice. Event handlers are often significantly
more complicated than the example shown in Fig. 31, and MultiJava’s advantages
over Java increase with this complexity. For example, the various Event subclasses
may form a deep hierarchy, with subclasses of Event having their own subclasses.
This scenario occurs in the Location Stack. In the text editor example above, sup-
pose that Save has a subclass SaveAs for saving to a new file. If special behavior
for SaveAs is required for EditorGUI in Fig. 31, the Java version must be updated
carefully with a new if case. The programmer must ensure that that the SaveAs
case comes before the case for Save, or else the new case will never be invoked. In
general, the programmer must always ensure that a class is tested before any of its
superclasses. In the MultiJava version, a new handleEvent multimethod special-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 39

izing on SaveAs can be added anywhere in EditorGUI, and MultiJava’s symmetric
dispatching semantics ensures that it will be invoked properly.

Code for deep hierarchies can also naturally take advantage of resends. For
example, suppose that EditorGUI on SaveAs should do everything that it does for
Save, preceded by some extra statements s1, . . . , sn (e.g., initializing the new file)
and followed by some other statements sn+1, . . . , sm. In the MultiJava version, the
handleEvent method for SaveAs simply performs s1, . . . , sn, uses resend to invoke
EditorGUI’s handler for Save, and then performs sn+1, . . . , sm. The Location Stack
employs this style to reuse code across handlers. In contrast, in the Java version
one must either duplicate the code for Save in the case for SaveAs, or one must
create a helper method that both cases invoke, which requires that the case for
Save be modified.

Another common source of complexity in practice is when a handler depends
upon more than just the kind of event announced in order to determine what ac-
tion to take. For example, events in the one.world library have a closure field
of type Object. The closure is used in request-response interactions to distinguish
among several response events processed by the same event handler. Many handlers
dispatch based on both which event is passed and what kind of closure that event
contains. MultiJava generalizes naturally to handle this scenario, via dispatch on
multiple arguments. Instead of defining handleEvent by a set of multimethods,
a single handleEvent method now invokes a helper method handleWithClosure,
passing both the announced event and the event’s closure field. The handleWith-
Closure method then performs the desired dispatching:

void handleWithClosure(Event@Event1 e1,
Object@LocalClosure closure) { . . . }

void handleWithClosure(Event@Event2 e2,
Object@RemoteClosure closure) { . . . }

· · ·

Each handleWithClosure method cleanly documents the conditions under which it
will be invoked, and static typechecking ensures a most-specific applicable handler
for each (event, closure) pair. The only disadvantage is the need to create this
helper method, in order to dispatch on the closure field. Aside from being more
verbose, the helper method also breaks the bond between the event and the closure:
there is nothing in the handleWithClosure operation documenting the fact that the
closure argument should be the value of the closure field of the event argument.
Using the helper method also makes it hard to inherit handlers from superclasses
(as described below), unless those superclasses also use handleWithClosure helper
methods.

Despite these disadvantages, the MultiJava solution is much more elegant than
an equivalent solution in Java. To handle dispatch on closure fields in Java, the
event-handling code must be further obfuscated with additional type tests and
casts. Dispatch on closure fields was typically implemented in Java using nested
ifs: an outer if dispatched on the event, and each case of that if included code
to dispatch on the various kinds of closures. Such an approach is not just tedious
but is asymmetric, making it harder to understand the conditions under which

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

40 · Curtis Clifton et al.

each “handler” triggers. Further, a one.world user reported that this style made
it too easy to omit enforcement of some dispatching requirements in the code. For
example, dispatching on the closure could be omitted in outer if cases that didn’t
use the closure (or didn’t depend on its runtime type), even though it was still
intended that the closure be of a particular type. Because of the tedium of the Java
style, such errors of omission occurred often in that user’s Java code. Also, the
user reported that on revisiting code that omitted dispatching on closure types, he
was sometimes unsure whether he had intentionally or inadvertently omitted the
closure dispatching. With MultiJava, there is no advantage to omitting dispatch
requirements, because each handleWithClosure method explicitly mentions both
the event and its closure, and expressing a dispatching requirement is lightweight
and declarative.

5.1.2.3 Component Hierarchies. MultiJava also allows new ways of structuring
handlers that were not considered previously by the developers of the event-based
systems. Because multimethods can be inherited, it is possible to have deep hierar-
chies of components. Each component inherits all of the handlers of its superclasses,
optionally overrides any of these handlers, and adds new handlers.

Both the reconfigurable chip’s GUI and the Location Stack employ this style.
For example, in the GUI, the abstract Component class represents an arbitrary
GUI element. It has a default method handling any Event that acts as the “error
handler,” freeing subclasses from having to handle unexpected events. An abstract
HighlightedComponent subclass represents a component that is able to be high-
lighted. It inherits the error handler and adds a handler that responds to the act
of highlighting by updating the GUI properly. A TerminalComponent is a subclass
of HighlightedComponent representing a wire connection point on the chip. It
inherits the error handler and the highlighting functionality, and it has additional
handlers for events specific to terminals.

Simulating this idiom of fine-grained handlers inheriting functionality from su-
perclasses is very awkward in the Java version, where each handler is a monolithic
if block. Each subclass has to explicitly invoke super in the right places to man-
ually dispatch to superclass handlers when inheritance is desired. That style is
so unnatural that the developers of these systems did not even consider handler
inheritance to be an option before they started using MultiJava.

5.1.2.4 Value Dispatching. The event-based style presented so far uses a hierar-
chy of Event subclasses to represent the various events in a system. An alternative
approach employs a single Event class with no subclasses, with an integer or string
field signifying which kind of event a particular instance represents. Although this
latter style is less object-oriented and less expressive (e.g., it does not allow deep
hierarchies of events), it is perceived to be a more lightweight solution and is fairly
common. Event-based systems that employ this style can naturally use MultiJava’s
value dispatching to declaratively dispatch on the event “tags.”

For example, the Java AWT sometimes uses strings to distinguish events. Its
ActionEvent class has an “action command” string that is set in the constructor
and specifies the event being represented. Fig. 32 shows how event handlers in
this style are written in Java and MultiJava, for the hypothetical text editor. The
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 41

void handleEvent(ActionEvent e) {
String cmd = e.getActionCommand();

if (cmd.equals("open")) {
/* open a file */

. . .
} else if (cmd.equals("save")) {

/* save the currently opened file */

. . .
} else if (cmd.equals("quit")) {

/* quit the application */

. . .
} else {

/* handle unexpected events */

. . .
}

}

void handleEvent(ActionEvent e) {
handleCmd(e, e.getActionCommand());

}
void handleCmd(ActionEvent e,

String@@"open" cmd) {
/* open a file */

. . .

}
void handleCmd(ActionEvent e,

String@@"save" cmd) {
/* save the currently opened file */

. . .

}
void handleCmd(ActionEvent e,

String@@"quit" cmd) {
/* quit the application */

. . .
}
void handleCmd(ActionEvent e,

String cmd) {
/* handle unexpected events */

. . .
}

(a) (b)

Fig. 32. (a) Dispatching on primitive events in Java, and (b) in MultiJava

MultiJava version has the same advantages as described for the code in Fig. 31b.
Labscape employs MultiJava in this way to handle events related to its GUI. Value
dispatching allows Labscape to use the existing AWT library while still enjoying
the benefits of the MultiJava style.

There are opportunities for value dispatching even when events are written in
a class hierarchy. An earlier example illustrated event handlers that depend upon
an event’s closure field in addition to the event’s runtime type. Some one.world
events, subclasses of TypedEvent, contain an integer type field which is used to
distinguish among events of the same general kind. MultiJava handlers in this
case look similar to the handleWithClosure methods presented above, but with
the second argument employing value dispatching on the type field of the received
event.

5.1.2.5 Limitations. Users did point out some limitations of MultiJava in the
context of event dispatching. First, MultiJava can be more verbose than equivalent
code using ifs, because of the need to repeat the method’s header for each han-
dler. Second, it is easy to forget the Event@ portion of a formal parameter’s type,
thereby accidentally using static overloading instead of multimethod dispatch. To
alleviate this problem, we augmented the mjc compiler to signal a warning if static
overloading is used where multimethod dispatch could be used instead. Third, dis-
patching on properties of an event other than its runtime type requires the creation
of helper methods, as mentioned earlier.

Fourth, it is not easy to update a component when a new event type enters the
system. The component must be augmented in place to contain a multimethod

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

42 · Curtis Clifton et al.

specializing on the new event type. This is still better than the Java version, in
which the programmer must find the right place in the if chain to place a new case.
However, it would be nice to write the new multimethod external to the component,
thereby allowing new events to be incorporated without modifying existing code.
This ability is a step toward allowing a running system to be updated on the fly
with new events, which is important for the ubiquitous computing applications.

Finally, the need for default methods limits MultiJava’s ability to perform useful
completeness checking. It is impossible for a component to document the fact that
it handles exactly three kinds of events, and no others. Instead, it must always
include a default method, to handle any unexpected events. Some programmers
found it useful for the language to force them to think about exceptional situations,
but others thought it more of a nuisance. An extension to MultiJava described in
Section 6 below, called Relaxed MultiJava, provides one possible solution to this
problem.

5.1.3 Noninvasive Visitors. Section 2.3 illustrated how multimethods can be
used to implement a noninvasive version of the visitor design pattern. The HydroJ
compiler is built on top of the Polyglot extensible compiler framework [Nystrom
et al. 2003], which supports visitors over the hierarchy representing abstract syntax
tree (AST) nodes. HydroJ provides new subclasses of Polyglot’s visitors and uses
multimethods to implement the node dispatch.

As described in Section 2.3, open classes enjoy two key advantages over non-
invasive visitors. However, the noninvasive visitor pattern provides the benefits
of classes, which external methods lack. Helper fields can easily be included in a
visitor class, while these must be simulated through extra parameters in external
methods.12 More importantly, visitors can inherit functionality from superclasses,
analogous to the inheritance of event handlers described earlier. For example,
Polyglot provides an abstract HaltingVisitor class, which performs a boilerplate
traversal over AST nodes that also supports bypassing certain nodes during the
traversal. Concrete visitors that require the functionality to bypass nodes simply
subclass HaltingVisitor and provide overriding methods to customize its behav-
ior as necessary. In contrast, each external method family must implement its own
traversal behavior from scratch.

One limitation of MultiJava that arises in the HydroJ compiler is the requirement
that specializers be classes. Polyglot provides its AST nodes as a hierarchy of
interfaces, with the intent that the associated implementation classes should remain
hidden from clients. The HydroJ compiler must break this abstraction boundary
and dispatch directly on the implementation classes. The Java style does not suffer
from this problem, because instanceof tests are allowed on interfaces. Again,
Relaxed MultiJava provides one solution to this problem (see Section 6).

5.1.4 Finite-state Machines. A common way to implement a finite-state ma-
chine (FSM) in Java is to associate an integer constant with each state. The FSM’s

12Analogous to external methods, external fields would also fit this purpose. The key obstacles in

implementing external fields are initializing those fields and handling persistence for them. These
issues are discussed in more detail in Clifton’s thesis [2001, §6.1.4]. A thorough investigation of

these issues remains as future work.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 43

class ZeroOneFSM {
static final int EXPECT ZERO = 0;

static final int EXPECT ONE = 1;

int currState = EXPECT ZERO;

int numOccurrences = 0;

void readAndTransition(int input) {
transition(input, currState);

}

void transition(int@@0 input, int@@EXPECT ZERO state) {
currState = EXPECT ONE;

}
void transition(int@@1 input, int@@EXPECT ONE state) {

currState = EXPECT ZERO;

numOccurrences++;

}
void transition(int input, int state) {

currState = EXPECT ZERO;

numOccurrences = 0;

}
}

Fig. 33. Implementing finite-state machines in MultiJava

class has a field recording the current state, and a method in the class implements
the FSM’s transition function: based on the given input and the current state, the
method performs some actions and transitions to a new state. This style is error
prone and difficult to understand, since the programmer must manually implement
the logic of the transition function as a monolithic block of code. An alternative
approach uses the “state” design pattern [Gamma et al. 1995]. This pattern uses
an explicit class hierarchy to represent states, and each state class implements its
portion of the FSM’s transition function. However, the state pattern is heavyweight
and tedious, requiring the introduction of several new classes and requiring the FSM
to explicitly forward messages to its state field. Further, while the state pattern
makes dispatch on the FSM’s state declarative, dispatch on the FSM’s input must
still be manually implemented.13

In MultiJava, value dispatching provides a natural way to implement FSMs that
are as lightweight as the first style described above and as declarative as the second
style. As a simple example, Fig. 33 implements an FSM that keeps track of the
number of consecutive alternations of 0 and 1 that have been input. There are
two states, which respectively track whether a 0 or 1 is expected as input. The
transition function has three transitions, each nicely encapsulated in its own mul-
timethod. For example, the first transition method “fires” when the input is 0
and the FSM is in the EXPECT ZERO state. In that case, the FSM moves to the
EXPECT ONE state. The method uses MultiJava’s allowance of any compile-time
constant expression after a @@. The last transition method is the one required

13The standard version of the state design pattern uses a separate method for each input, rather
than a single transition function. Using separate methods works well if there is a fixed set of

inputs but makes it difficult to extend this set after the fact.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

44 · Curtis Clifton et al.

interface Procedure {
void apply(Object o);

}

void Iterator.doEach(Procedure p) {
while (this.hasNext()) {

p.apply(this.next());

}
}

/* sample client code */

Iterator i = . . .
i.doEach(new Procedure() {

void apply(Object o) { . . . } });

Fig. 34. Adding closure-based iteration to Java

by typechecking requirement R1, to ensure completeness. It handles the case when
unexpected data is input (or an unexpected state is reached), in which case the
FSM resets.

The Location Stack uses this style to implement the FSMs that parse readings
from the various location sensors. The developer reports that it is much easier to
understand the behavior of an FSM written in this way, versus the typical Java
style. The MultiJava version also enjoys all the benefits described earlier for mul-
timethods. For example, the FSM is easily extensible by subclasses, which can add
new transitions and optionally override existing ones.

5.2 Open Classes

The Hydro and HydroJ compilers exploit open classes for several purposes, which
are described in this section.

5.2.1 Unavailable Source. A common use of open classes has been to augment
classes whose source is not available (or not easily modified). The Hydro and
HydroJ compilers add several methods to classes in the Java standard library. For
example, a method for removing whitespace from a string is defined in HydroJ as
follows:

public String String.deleteWhitespace() { . . . }

Clients can import the new method family and then invoke it as if it were part of
the original functionality of strings. In Java, this idiom is typically simulated by
a static method in a dummy class, which is a bit more tedious and has a different
call syntax from the original methods of String.

A more interesting example is illustrated in Fig. 34, which is a variant of code
from the Hydro compiler. The doEach method augments java.util.Iterator
with closure-based iteration. The closure is defined as a (typically anonymous) class
that implements the Procedure interface. A side benefit of open classes illustrated
in this example is the ability to add methods to interfaces (like Iterator). Such
an ability was absent in the original design of MultiJava, but was added based on
user feedback.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 45

/* file “print.java” */

public String TreePatternNode.print() { . . . }
public String ListPatternNode.print() { . . . }
public String StarPatternNode.print() { . . . }
· · ·

Fig. 35. Structuring code by algorithm with open classes

The Hydro compiler offers yet another interesting example related to unavailable
source. Hydro uses the SableCC parser generator [Gagnon and Hendren 1998],
which builds the AST node hierarchy automatically from a description of Hydro’s
grammar. Modifying the resulting AST classes is undesirable, because any changes
will be lost the next time SableCC is run. The nodes generated by SableCC provide
a visitor-like framework so clients can implement external traversals over the AST
hierarchy, and the Hydro developer used these visitors to implement the major
passes in the compiler. However, he preferred using open classes for functionality
that is not meant to traverse the entire AST hierarchy. For example, Hydro includes
a rich language for pattern matching, and open classes make it easy to add new
behavior to the pattern nodes. Using the visitor infrastructure would require that
the external operations for patterns actually be able to handle an arbitrary node,
which is more tedious and loses some static type safety.

A necessary limitation of open classes is the lack of privileged access to the
receiver class. To use open classes successfully, the public functionality of the
receiver must be rich enough to allow clients to implement unanticipated behaviors.
For example, String has methods that provide access to each character, and this is
enough to allow whitespace to be removed by clients, as shown in the first example
above. This limitation of open classes is necessary to retain Java’s encapsulation
properties, and it is shared by the Java solutions to the augmenting method problem
discussed in Section 2.2.1.

5.2.2 Client-specific Extensions. It can make sense to make an operation ex-
ternal even if the source code for its receiver class is available. One such scenario
is when the new functionality is client-specific rather than general-purpose. With
open classes, the new functionality can be implemented without polluting the view
of the original receiver class as seen by other clients. In general, each client can have
his own library of extensions to an existing class hierarchy. The HydroJ compiler
implements client-specific operations in this way. For example, the compiler main-
tains an instance of java.util.List containing AST nodes. The compiler extends
Java’s List implementation with an external method for deep copying List’s of
AST nodes. Although in this case the source code for List is actually not available
for editing, the developer reports that he would use external methods for this oper-
ation even if he had source-code access to List. Indeed, an AST-specific operation
does not belong in the view of List as seen by all clients.

5.2.3 Flexible Code Structuring. Open classes also allow code decompositions
other than by receiver class. It is sometimes useful to encapsulate an entire method
family’s methods as a unit, rather than spreading the methods across the various
receiver classes. This can be especially helpful when the methods implement a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

46 · Curtis Clifton et al.

single conceptual algorithm. As an example, the code for printing AST nodes in
the HydroJ compiler is implemented as an external method family, a portion of
which is illustrated in Fig. 35. The developer felt that this decomposition was more
natural than the by-class view. In addition, the HydroJ compiler contains a few
different algorithms for printing AST nodes. Each is implemented as an external
method family, and clients import the one appropriate to their needs.

6. RELAXED MULTIJAVA

As discussed above, the experience of our user community provides a practical
demonstration of several ways in which MultiJava can be used to improve code
comprehension, extensibility, and correctness. User experience with MultiJava has
also helped to identify useful enhancements to the language. In the previous section,
we mentioned two of these: David Cok’s HTML documentation utility, mjdoc,
and the addition of external methods on interfaces. In this section we discuss
an extension to MultiJava, called Relaxed MultiJava (RMJ) [Millstein et al. 2003],
that relaxes the static typechecking requirements in order to address other concerns
identified by our users.

The key observation behind RMJ is that violations of MultiJava’s typechecking
requirements, discussed in Section 3.3.2, indicate only the potential for a method
family to be incompletely or ambiguously implemented, because MultiJava must be
conservative given only a modular view of the program. Therefore, RMJ performs
the same modular static typechecking as MultiJava, but RMJ treats a violation of
some requirement as a warning rather than an error. The programmer can choose
to resolve the violation, as he would be forced to do in MultiJava, thereby obtaining
a modular guarantee of type safety. Alternatively, the programmer can choose to
violate the MultiJava requirement and take responsibility for ensuring that the
potential error does not arise, in order to obtain the desired expressiveness. A
custom class loader [Liang and Bracha 1998] for RMJ incrementally checks that
potentially erroneous method families remain complete and unambiguous as classes
are loaded, thereby ensuring that all errors are still detected no later than class load
time. Therefore, as in MultiJava, message-not-understood and message-ambiguous
errors cannot occur when messages are sent at run time.

RMJ provides several useful programming idioms that are disallowed in Multi-
Java. Treating requirement R2 as a warning instead of an error allows programmers
to implement abstract external methods. For example, when the compilation unit
in Fig. 21 is typechecked, RMJ signals a warning but still allows compilation to
complete. The abstract circumference method documents the fact that each con-
crete Shape subclass must provide its own circumference method (or must inherit
one). The RMJ class loader ensures this is the case, incrementally checking con-
crete Shape subclasses as they are loaded in the program. In this way, RMJ relieves
the burden on the programmer of having to write default methods when they are
deemed unnecessary or unnatural. In our example, unless the signature of the orig-
inal Shape class is very rich, it is unlikely that a reasonable default implementation
of circumference can be provided. In MultiJava, the programmer may therefore
have no choice but to make the default method raise an exception, which is effec-
tively the same as the message-not-understood error that MultiJava’s restrictions
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 47

package client;

import examples.circumference;

import Circle;

public double Circle.circumference() {
return 2.0 * Math.PI * radius();

}

Fig. 36. Glue methods in RMJ

are meant to prevent. RMJ avoids such awkward default methods, at the cost of
some additional load-time checking.

As another example, consider the Circle class in Fig. 8. The implementers of
the Circle and circumference extensions to the original Shape class are unaware
of one another. Therefore, neither extension provides a method for computing
the circumference of a Circle. Given the circumference methods in Fig. 21,
RMJ will signal an incompleteness error if circumference and Circle are ever
loaded in the same program. However, in RMJ a client who wants to include
both extensions in a program can make them work together by implementing the
appropriate method, as shown in Fig. 36. MultiJava would disallow this method
from being written, since it violates requirement R3 — the external method is not
declared in the same compilation unit as its method family’s top method. In RMJ,
the method triggers a compile-time warning but is allowed, and the RMJ class
loader incrementally checks that the method is not ambiguous with any modularly
unseen circumference methods. We call methods that violate requirement R3 glue
methods, because they serve to integrate two previously independent libraries.

RMJ’s typechecking relaxations are implemented as an option to the mjc com-
piler. We have also implemented RMJClassLoader, a subclass of Java’s default class
loader, in order to perform RMJ’s incremental load-time checks. While the custom
class loader naturally augments Java’s dynamic loading scheme, users may some-
times desire early feedback about the possibility of load-time errors. We therefore
also provide a “preloader” tool RMJPreLoader, which uses whole-program informa-
tion to statically check for the possibility of such errors. If no errors are found, then
the programmer is assured that the RMJClassLoader will never signal an error, for
any possible run of the given program (modulo the use of reflection to dynamically
load classes).

Although RMJ offers strictly greater flexibility than MultiJava, we have chosen
not to make the relaxed version of the language the default. To implement glue
methods in their full generality, the current code generation strategy for RMJ pro-
duces separate dispatcher classes for each method of an external method family.
This strategy results in bytecode that is slower than that currently produced by
the non-relaxed option, which compiles all external methods from the same com-
pilation unit into a single dispatcher class. While MultiJava could be made to use
RMJ’s compilation strategy, we have chosen not to impose the efficiency penalty
on the common case of complete, unambiguous method family implementations.

The introduction of glue methods also requires augmented support for loading
and linking external methods into applications. Currently RMJ’s custom class

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

48 · Curtis Clifton et al.

Table I. Comparison of dispatch times for a simple tree walk

Implementation 5 nodes 7 nodes 341 nodes

Extensible Visitor 50 ms 80 ms 3,265 ms

Open Classes 270 ms 311 ms 15,542 ms

Speed Up 0.19 0.26 0.21

loader is responsible for explicitly loading all external methods when appropriate, in
addition to performing load-time checks on classes. Therefore, in order for external
methods to work properly, all RMJ programs must be run on top of our custom class
loader. Keeping MultiJava, rather than RMJ, as the default version of the language
allows external methods to be loaded as described in Section 4, avoiding the need to
use the RMJ custom class loader in the common case. If Java had a whole-program
link-time phase in place of its lazy class-loading scheme, this distinction between
MultiJava and RMJ would not exist.

7. PERFORMANCE

As stated in the introduction, the performance of MultiJava code is not a primary
focus of our research. This is partly because:

—bytecode for regular Java code is no different when compiled in MultiJava, and

—MultiJava source code using multiple dispatch or open classes cannot easily be
expressed in regular Java.

Nevertheless, Clifton’s thesis examined the performance of MultiJava code on a
variety of tasks and compared it to the performance of various partial solutions
written in Java [Clifton 2001, pp. 83–88]. We include the main results here and
refer the reader to his thesis for a description of the experimental technique and
rationale.

Because the MultiJava compilation strategy uses typecases for multimethods,
the performance of multimethods is the same as for typecases. That is, there is
no additional cost for multimethods beyond what would be incurred for a Java
implementation that required dispatch on non-receiver argument types.

To evaluate the performance of open classes, Clifton compares the performance
of various operations implemented in MultiJava and using the Extensible Visitor
Pattern [Krishnamurthi et al. 1998]. Extensible Visitor was chosen because it pro-
vides similar extensibility as open classes (though it requires advance planning and
is tedious to implement). The results in Table I and Table II demonstrate that
as the complexity of the operation to be performed increases, the relative disad-
vantage of the dispatch strategy for external method families decreases. That is,
dispatch becomes a smaller percentage of running time. Table III demonstrates an
interesting result. For the operation studied here, because of the additional code
required for the visitor implementation (for the construction of additional visitors,
the passing of arguments, and returning of results), MultiJava’s open class solution
is actually more efficient. In fairness, the extensible visitor code used in this last
comparison was written rather mechanically and could be made more efficient with
a little effort. On the other hand, the code used is representative of what one might
actually write.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 49

Table II. Comparison of dispatch times for tree size calcu-

lation

Implementation 5 nodes 7 nodes 341 nodes

Extensible Visitor 120 ms 160 ms 7,461 ms
Open Classes 251 ms 310 ms 15,783 ms

Speed Up 0.48 0.52 0.47

Table III. Comparison of dispatch times for pretty print op-

eration

Implementation 5 nodes 7 nodes 341 nodes

Extensible Visitor 1,792 ms 2,254 ms 141,804 ms

Open Classes 1,322 ms 1,763 ms 129,135 ms

Speed Up 1.36 1.28 1.10

Table IV. Comparison of augmenting method
dispatch times for varying degrees of modularity

Implementation Time Speed Up

Regular Methods 1,061 ms –

Visitor Pattern 1,703 ms 0.62

Extensible Visitor 1,792 ms 0.59
Open Classes 1,322 ms 0.80

Clifton also compares MultiJava solutions to the augmenting and binary method
problems with Java-based solutions that are less modular. Results for these exper-
iments are given in Table IV and Table V.

8. RELATED WORK

This section discusses other multimethod-based languages, other approaches to the
extensibility problem, and languages for advanced separation of concerns.

8.1 Other Multimethod-based Languages

There are several other languages supporting multimethod dispatch. Cecil [Cham-
bers 1992; 1997] is a statically typed, prototype-based object-oriented language sup-
porting multimethods written external to their associated objects. Cecil requires
the whole program to safely perform implementation-side typechecking [Litvinov
1998]. Dubious [Millstein and Chambers 2002; Millstein 2003] was designed as a
distillation of Cecil to its core constructs, for formal study of the modular type-
checking problem. MultiJava’s modular type system is based on that of Dubious.

Common Lisp [Steele Jr. 1990; Paepcke 1993] and Dylan [Shalit 1997; Fein-
berg et al. 1997] are both multimethod-based languages. All methods are written
external to their classes. To avoid runtime ambiguities, Common Lisp totally or-
ders the arguments of a method family; Dylan uses the symmetric semantics, as
in MultiJava. Both Common Lisp and Dylan totally order the inheritance hierar-
chy, eliminating the potential for multiple-inheritance ambiguities. The languages

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

50 · Curtis Clifton et al.

Table V. Comparison of binary method dis-

patch times for varying degrees of modularity

Implementation Time

Double-dispatching 2,704 ms
Multiple Dispatch 4,306 ms

Speed Up 0.63

are dynamically typed, so they do not consider the issue of static typechecking,
modular or otherwise.

Polyglot [Agrawal et al. 1991] is a database programming language akin to Com-
mon Lisp with a first-order static type system. There are no abstract methods, so
there is no possibility of message-not-understood errors. Further, the dispatching
semantics uses Common Lisp-style total ordering of multimethod arguments and
inheritance, avoiding all ambiguities. Therefore, only the monotonicity of the result
types [Castagna et al. 1995; Reynolds 1980] of multimethods needs to be checked
to ensure modular type safety.

Kea [Mugridge et al. 1991] and Tuple [Leavens and Millstein 1998] are statically
typed, class-based languages with symmetric multimethods. Kea has a notion of
separate compilation, but this requires runtime implementation-side typechecking
of method families. Tuple requires the whole program to be available in order to
perform implementation-side typechecking statically. In Tuple, all multimethods
are written as external methods that dispatch on an explicit tuple of arguments
as the receiver, thereby cleanly separating specialized from unspecialized argument
positions. An early design for MultiJava adapted this style, but we rejected that
in favor of the current design for several reasons. Tuple requires that all methods
of the same method family have identical specialized and unspecialized argument
positions. This means, for example, that a multimethod cannot override an existing
Java method. Further, because the distinction between specialized and unspecial-
ized arguments is visible to clients in Tuple, specializing an unspecialized argument,
or the converse, requires modifying all call sites in the program.

Encapsulated multimethods [Castagna 1995; Bruce et al. 1995] are a design for
adding multimethods to an existing single dispatch object-oriented language. An
encapsulated multimethod is written inside of its receiver’s class; external methods
are not supported. Encapsulated multimethods involve two levels of dispatch. The
first level is just like regular single dispatch to the class of the receiver object. The
second level of dispatch is performed within this class to find the best multimethod
applicable to the dynamic classes of the remaining arguments. The encapsulated
style can lead to duplication of code, since multimethods in a class cannot be
inherited for use by subclasses.

Several other efforts have extended Java to support multimethod dispatch. Par-
asitic methods [Boyland and Castagna 1997] and Half & Half [Baumgartner et al.
2002] are both extensions to Java that include encapsulated multimethods. Both
augment the encapsulated style with the ability to inherit multimethods from su-
perclasses. The resulting expressiveness is comparable to that of MultiJava’s in-
ternal multimethods, but MultiJava additionally retains the natural symmetric
multimethod dispatch semantics. MultiJava also supports open classes and value
dispatching. Both parasitic methods and Half & Half support the use of inter-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 51

faces as specializers in multimethods. Because it is difficult to modularly check
multimethod ambiguity in the presence of interface specializers, parasitic methods
modify the multimethod dispatching semantics so that ambiguities cannot exist,
employing the textual order of methods to break ties. Half & Half resolves the
problem by performing implementation-side typechecking on entire packages at a
time, rather than on individual classes. For such package-level checking to be safe,
Half & Half must also limit the visibility of some interfaces to their associated
packages, thereby disallowing outside clients from employing those interfaces as
specializers. In addition to multimethods, Half & Half supports a restricted form
of retroactive abstraction, the ability to add new superclasses and superinterfaces to
existing classes. Again, this is possible because of Half & Half’s package-granularity
typechecking. It is unclear how to simultaneously support Java’s modular static
typechecking and retroactive abstraction, so we have not yet added this feature to
MultiJava.

Others have incorporated multimethods into Java without extending the lan-
guage’s syntax, instead using a library solution. These solutions have the advan-
tage that any Java compiler can be used to compile programs that employ multi-
ple dispatch. However, these solutions are typically not as general as MultiJava’s
multimethods. In addition, because multimethods are not typechecked specially,
incompletenesses and ambiguities are not statically detected. For example, Forax
et al. [2000] provide a MultiMethod class, and multimethods are declared by invok-
ing MultiMethod.create. Grothoff [Grothoff 2003] provides an abstract Runabout
class; user-defined subclasses of Runabout have a visit method that employs mul-
tiple dispatch. Both of these strategies rely heavily on Java’s reflection in order to
implement multimethod dispatch. By building dispatchers dynamically, based on
the current set of loaded multimethods, these solutions can generate more efficient
code than that generated by MultiJava’s modular compilation strategy.

Dutchyn et al. [2001] also employ a library solution for incorporating multi-
methods into Java. They use a marker interface to indicate classes where static
overloading should instead be treated as dynamic overriding (i.e., multimethod
specialization). A modified virtual machine implements the changed semantics for
classes bearing the marker interface. They show that the approach results in a
large speed-up over double dispatching, because multimethod dispatch is done in
native code. It would be interesting to consider combining the modified virtual
machine approach with MultiJava. MultiJava’s generated dispatcher code would
be used to achieve the correct semantics when a MultiJava class was run on a stan-
dard virtual machine. A MultiJava-aware virtual machine could use native dispatch
code, à la Dutchyn et al., to achieve faster execution, perhaps by using our existing
multimethod bytecode attributes described in Section 4.4.3.

The Nice programming language [Bonniot and Keller 2003] is a recent object-
oriented programming language that is similar to Java but has its heritage in ML≤
[Bourdoncle and Merz 1997]. Nice was developed after MultiJava and it includes
multiple dispatch and open classes. Nice also includes a restricted form of retroac-
tive abstraction based on abstract interfaces [Bonniot 2003]. Nice does not support
modular implementation-side typechecking, which is the key technical contribution
of our work. While MultiJava is designed to be a backward-compatible extension to

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

52 · Curtis Clifton et al.

Java, Nice is a separate language with significant differences and incompatibilities.
Nice is, however, designed to interoperate with Java programs and libraries, and
the Nice compiler targets the standard Java virtual machine.

Ernst et al. [1998] describe a generalization of multimethod dispatch called pred-
icate dispatch. Each method can be associated with a predicate guard, which speci-
fies when the method is applicable. An object-oriented-style dispatching semantics
is used, with logical implication of predicates as the specificity relation among
methods. The authors provide a conservative implementation-side typechecking al-
gorithm for predicate dispatch. The algorithm is non-modular, requiring access to
the entire program to ensure safety. Follow-on work described efficient implementa-
tion techniques for predicate dispatch [Chambers and Chen 1999]. These techniques
could also be useful for improving MultiJava’s compilation strategy. JPred [Mill-
stein 2004] is an extension of Java supporting predicate dispatch. JPred adapts
and generalizes MultiJava’s typechecking requirements to support modular, static
typechecking for predicate dispatch.

8.2 Other Solutions to the Extensibility Problem

Jiazzi [McDirmid et al. 2001] is an extension to Java that adds a module mechanism
based on units [Flatt and Felleisen 1998; Findler and Flatt 1999], a powerful form
of parameterized module. Jiazzi supports extensibility idioms not provided by
MultiJava, such as the ability to implement a mixin [Bracha and Cook 1990; Findler
and Flatt 1999; Flatt et al. 1998], which is a class parameterized by its superclass.
The authors also show how to encode an open class pattern in Jiazzi, whereby a
module imports a class and exports a version of that class modified to contain a new
method or field. Open classes in MultiJava allow two clients of a class to augment
the class in independent ways, without having to be aware of one another. In
contrast, in Jiazzi there must be a single module that integrates all augmentations,
thereby creating the final version of the class. Module linking in Jiazzi is performed
statically, so it is not possible to dynamically add new methods to existing classes.
Dynamic augmentation is possible in MultiJava, since open classes are integrated
with Java’s regular dynamic loading process.

Zenger and Odersky [2001] describe an extensible datatype mechanism in the
context of an object-oriented language. Classes can declare “cases,” which are
similar to ML data variants. Methods of other classes use functional-style pattern
matching to dispatch on the data variants of an existing datatype. The result
is a form of augmenting method similar to our noninvasive visitors. To ensure
completeness in the presence of datatype extension, all methods that pattern-match
on extensible datatypes must include the equivalent of the unspecialized method
required by MultiJava’s requirement R1. As with noninvasive visitors, Zenger and
Odersky’s functions are not extensible. Therefore, if new data variants require
overriding function cases, a new function must be created that inherits the existing
function cases, and clients must be modified to invoke the new function.

More recently, Zenger and Odersky [2005] present two solutions to the augment-
ing method problem written in the Scala programming language. Their solutions
use three unique features of Scala: dependent types, mixin composition, and explic-
itly typed self references. Their solutions are dual to each other, with one primarily
expressed in the object-oriented style and the other in a procedural style. Un-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 53

like the MultiJava solution, where default operations must be provided to prevent
unseen incompleteness, the Scala type system rules out invocation of operations
on datatypes for which the operations are not defined. The trade-offs include a
more complex type system in Scala and advance planning for extension of the base
datatype or operations. Unlike MultiJava, which is a simple extension to Java,
Scala is a unique programming language. Thus, it solves a different problem and
is not subject to the same constraints as MultiJava. Scala’s type system is based
on the νObj calculus [Odersky et al. 2003]. Zenger and Odersky also demonstrate
a solution to the binary method problem using Scala. Their solution is based on
the double-dispatch technique and requires the same tedious coding. However, un-
like traditional double dispatch, the use of dependent types allows (with advance
planning) modular extension of the associated method family. Scala is designed to
interoperate with both the Java Virtual Machine and libraries, and with the .NET
libraries and runtime [Troelsen 2003].

Other work on the extensibility problem has addressed it in the context of func-
tional languages. Extensible ML (Eml) [Millstein et al. 2002] is an ML-like lan-
guage that supports hierarchical, extensible datatypes and functions. Such con-
structs allow for the easy addition of both new data variants and new operations to
existing abstractions. Eml retains fully modular typechecking by adapting Multi-
Java’s typechecking requirements. Garrigue shows how to use polymorphic variants,
which are variants defined independently of any particular datatype, to obtain both
modular data-variant and function extensibility in ML [Garrigue 2000]. However,
unlike in MultiJava, both kinds of extensibliity require advance planning. Mixin
modules [Duggan and Sourelis 1996] allow datatype and function declarations to
be split across multiple modules, thereby providing a form of extensible datatypes
and functions. Mixin modules must be explicitly combined to form the complete
datatypes and functions. Therefore, there must be a single place in the program
where all extensions to a given datatype or function are known. This contrasts with
the “nonlinear” extensibility of MultiJava: there need not be a single compilation
unit where all of a class’s subclasses or all of a method family’s methods are visible.

8.3 Advanced Separation of Concerns

Separation of concerns is the well-known software engineering concept that code
for different subdomains, or aspects, of a problem should be made as independent
as possible to encourage comprehensibility and efficiency (in both reuse and par-
allel development) [Parnas 1972; 1975]. Object-oriented languages encourage the
separation of concerns into code representing individual classes in a model of the
problem domain. However, there are some aspects which cut across the decompo-
sition of a problem domain into classes [Harrison and Ossher 1993; Kiczales et al.
1997; Tarr et al. 1999]. The subfield dealing with this problem is known as advanced
separation of concerns, or aspect-oriented software development.

Recently several languages have emerged that provide direct support for advanced
separation of concerns. For example, AspectJ [Kiczales et al. 2001; AspectJ Team
2004] is an aspect-oriented extension to Java, whose aspects can extend existing
classes in powerful ways. Hyper/J [Ossher and Tarr 2001] is a subject-oriented
[Harrison and Ossher 1993] extension to Java that provides hyperslices, which are
partially implemented modules that are composed to form classes or other mod-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

54 · Curtis Clifton et al.

ules. Both languages support open classes; for example, this ability corresponds to
AspectJ’s inter-type declarations. The languages additionally support many more
flexible extensibility mechanisms than MultiJava. For example, AspectJ’s before
and after advice provide ways of modifying existing methods externally. To cope
with this level of expressiveness, these languages employ non-modular typechecking
and compilation strategies. For example, AspectJ’s compiler “weaves” the aspects
into their associated classes; only when all aspects that can possibly affect a class
are available for weaving are final typechecking and compilation performed. (In re-
cent versions of AspectJ, weaving can be performed on bytecode and typechecking
is divided into separate phases, one performed incrementally at compile time and
another whole-program phase performed during bytecode weaving.) Also, because
of the weaving process, all clients of a woven class see the changes introduced by
the aspects, unlike MultiJava’s client-specific open classes.

Binary Component Adaptation (BCA) [Keller and Hölzle 1998] allows program-
mers to define adaptation specifications, which are directives for modifying existing
classes. Such specifications can include the addition of new methods to existing
classes, thereby supporting a form of open classes. Adaptation specifications can
also include modifications not supported by MultiJava, like retroactive abstraction.
The typechecking and compilation strategy of BCA is similar to the aspect-weaving
approach described above, requiring access to all adaptation specifications that can
affect a given class in order to typecheck and compile the class. The authors describe
an on-line implementation of BCA, whereby the weaving is performed dynamically
using a specialized class loader.

9. CONCLUSION

In this paper we have described the MultiJava programming language, motivated
the design of the language, and discussed its modular, static typechecking and
modular compilation strategy. MultiJava adds the ability to dispatch on a class
externally, that is without modifying the class in place. Among other things, this
allows MultiJava to cleanly solve the binary and augmenting method problems. It
does so, unlike other solutions, without requiring advance planning by the original
implementor of a datatype. We think that MultiJava represents a sweet spot in the
design space: it allows the concise, declarative expression of multimethod dispatch
and augmenting methods; and its type system is simple and intuitive.

We have also demonstrated how MultiJava’s conservative extension of Java has
allowed our users to easily adopt the language while creating more readable and
maintainable code. Sample code drawn from our user community illustrates the
benefits afforded by multiple dispatch and open classes and provides at least anecdo-
tal evidence arguing for the inclusion of these features in mainstream programming
languages.

ACKNOWLEDGMENTS

Thanks to David Cok for his work on the mjdoc documentation tool. Thanks
to the members of the Spring 2003 Computer Science Writer’s Workshop at Iowa
State University—especially to Becca Wemhoff—and the anonymous referees for
their helpful comments. Finally, many thanks to our users for their enthusiastic
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 55

adoption of MultiJava, insights on the language and possible improvements, and
creative use beyond what we had envisioned.

REFERENCES

Agrawal, R., DeMichiel, L. G., and Lindsay, B. G. 1991. Static type checking of multi-
methods. In OOPSLA ’91 Conference Proceedings, A. Paepcke, Ed. ACM SIGPLAN Notices,

vol. 26(11). ACM, New York, NY, 113–128.

Ancona, D., Lagorio, G., and Zucca, E. 2002. A formal framework for Java separate com-

pilation. In Proceedings of the 2002 European Conference on Object-Oriented Programming.

LNCS 2374. Springer-Verlag, Malaga, Spain.

Arnold, K., Gosling, J., and Holmes, D. 2000. The Java Programming Language Third Edi-

tion, Third ed. Addison-Wesley, Reading, MA.

Arnstein, L., Hung, C.-Y., Franza, R., Zhou, Q. H., Borriello, G., Consolvo, S., and Su,

J. 2002. Labscape: A smart environment for the cell biology laboratory. IEEE Pervasive

Computing 1, 3 (July), 13–21.

AspectJ Team. 2004. The AspectJ programming guide. Available from http://eclipse.org/

aspectj.

Baumgartner, G., Jansche, M., and Läufer, K. 2002. Half & Half: Multiple dispatch and
retroactive abstraction for Java. Tech. Rep. OSU-CISRC-5/01-TR08, Department of Computer

Science, The Ohio State University. Mar.

Bonniot, D. 2003. Using kinds to type partially-polymorphic methods. In Electronic Notes in

Theoretical Computer Science, G. Barthe and P. Thiemann, Eds. Vol. 75. Elsevier, New York,

NY.

Bonniot, D. and Keller, B. 2003. The Nice user’s manual. http://nice.sourceforge.net.

Bourdoncle, F. and Merz, S. 1997. Type-checking higher-order polymorphic multi-methods. In
Conference Record of POPL ’97: the 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. ACM, New York, NY, 302–315.

Boyland, J. and Castagna, G. 1997. Parasitic methods: Implementation of multi-methods for
Java. In Conference Proceedings of OOPSLA ’97. ACM SIGPLAN Notices, vol. 32(10). ACM,

New York, NY, 66–76.

Bracha, G. and Cook, W. 1990. Mixin-based inheritance. In OOPSLA ECOOP ’90 Proceedings,
N. Meyrowitz, Ed. ACM SIGPLAN Notices, vol. 25(10). ACM, New York, NY, 303–311.

Bridges, S., Figueroa, M., Hsu, D., and Diorio, C. 2003. Field-programmable learning arrays.
In Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA.

Bruce, K., Cardelli, L., Castagna, G., Group, T. H. O., Leavens, G. T., and Pierce, B.

1995. On binary methods. Theory and Practice of Object Systems 1, 3, 221–242.

Cardelli, L. 1988. A semantics of multiple inheritance. Information and Computation 76, 2/3

(February/March), 138–164. A revised version of the paper that appeared in the 1984 Semantics
of Data Types Symposium, LNCS 173, pages 51–66.

Castagna, G. 1994. Covariance and contravariance: conflict without a cause. Tech.

Rep. liens-94-18, LIENS. Oct. Available by anonymous ftp from ftp.ens.fr in file
/pub/dmi/users/castagna/covariance.dvi.Z. To appear in ACM TOPLAS, volume 17, num-

ber 3, March 1995.

Castagna, G. 1995. Covariance and contravariance: conflict without a cause. ACM Trans.
Program. Lang. Syst. 17, 3, 431–447.

Castagna, G. 1997. Object-Oriented Programming: A Unified Foundation. Progress in Theoret-
ical Computer Science. Birkhauser, Boston.

Castagna, G., Ghelli, G., and Longo, G. 1995. A calculus for overloaded functions with sub-

typing. Information and Computation 117, 1 (Feb.), 115–135. A preliminary version appeared
in ACM Conference on LISP and Functional Programming, June 1992 (pp. 182–192).

Chambers, C. 1992. Object-oriented multi-methods in Cecil. In ECOOP ’92, European Confer-
ence on Object-Oriented Programming, Utrecht, The Netherlands, O. L. Madsen, Ed. Lecture
Notes in Computer Science, vol. 615. Springer-Verlag, New York, NY, 33–56.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

56 · Curtis Clifton et al.

Chambers, C. 1997. The Cecil language specification and rationale: Version 2.1. Available from

http://www.cs.washington.edu/research/projects/cecil/www/pubs/cecil-spec.html.

Chambers, C. 1998. Towards Diesel, a next-generation OO language after Cecil. Invited talk,

the Fifth Workshop of Foundations of Object-Oriented Languages, San Diego, California.

Chambers, C. and Chen, W. 1999. Efficient multiple and predicate dispatching. In Proceed-
ings of the 1999 ACM Conference on Object-Oriented Programming Languages, Systems, and

Applications (OOPSLA ’99). ACM SIGPLAN Notices, vol. 34(10). ACM, New York, NY, 238–

255.

Chambers, C. and Leavens, G. T. 1995. Typechecking and modules for multi-methods.

TOPLAS 17, 6 (Nov.), 805–843.

Clifton, C. 2001. MultiJava: Design, implementation, and evaluation of a Java-compatible

language supporting modular open classes and symmetric multiple dispatch. Tech. Rep. 01-10,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011. Nov. Available

from www.multijava.org.

Clifton, C., Leavens, G. T., Chambers, C., and Millstein, T. 2000. MultiJava: Modular open
classes and symmetric multiple dispatch for Java. In OOPSLA 2000 Conference on Object-

Oriented Programming, Systems, Languages, and Applications. ACM SIGPLAN Notices, vol.
35(10). ACM, New York, NY, 130–145.

Cook, W. R. 1991. Object-oriented programming versus abstract data types. In Foundations

of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands,

May/June 1990, J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds. Lecture Notes in
Computer Science, vol. 489. Springer-Verlag, New York, NY, 151–178.

Drossopoulou, S., Eisenbach, S., and Wragg, D. 1999. A fragment calculus — towards a model

of separate compilation, linking and binary compatibility. In Logic in Computer Science. IEEE,
Trento, Italy, 147–156.

Duggan, D. and Sourelis, C. 1996. Mixin modules. In Proceedings of the ACM SIGPLAN

International Conference on Functional Programming (ICFP ’96). ACM SIGPLAN Notices,
vol. 31(6). ACM, ACM Press, New York, NY, 262–273.

Dutchyn, C., Szafron, D., Bromling, S., and Holst, W. 2001. Multi-dispatch in the java

virtual machine: Design and implementation. In Sixth Conference on Object-Oriented Tech-
nologies and Systems (COOTS). USENIX, Berkeley, CA.

Ernst, M. D., Kaplan, C., and Chambers, C. 1998. Predicate dispatching: A unified theory

of dispatch. In ECOOP ’98: 12th European Conference on Object-Oriented Programming,
Brussels, Belgium. Lecture Notes in Computer Science, vol. 1445. Springer-Verlag, New York,

NY, 186–211.

Feinberg, N., Keene, S. E., Mathews, R. O., and Withington., P. T. 1997. The Dylan
Programming Book. Addison-Wesley Longman, Reading, Mass.

Findler, R. B. and Flatt, M. 1999. Modular object-oriented programming with units and

mixins. In Proceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’98). ACM SIGPLAN Notices, vol. 34(1). ACM, New York, NY, 94–104.

Flatt, M. and Felleisen, M. 1998. Units: Cool modules for hot languages. In Proceedings of

the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). ACM SIGPLAN Notices, vol. 33(5). ACM, New York, NY, 236–248.

Flatt, M., Krishnamurthi, S., and Felleisen, M. 1998. Classes and mixins. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM, New York, NY, 171–183.

Forax, R., Duris, E., and Roussel, G. 2000. Java multi-method framework. In International

Conference on Technology of Object-Oriented Languages and Systems (TOOLS ’00), Sydney,
Australia. IEEE Computer Society Press, Los Alamitos, California.

Gagnon, E. and Hendren, L. J. 1998. SableCC, an object-oriented compiler framework. In

International Conference on Technology of Object-Oriented Languages and Systems (TOOLS
’98), Santa Barbara, California. IEEE Computer Society Press, Los Alamitos, California.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 57

Garrigue, J. 2000. Code reuse through polymorphic variants. In Proceedings of the Workshop

on Foundations of Software Engineering. Sassaguri, Japan. Available from http://wwwfun.

kurims.kyoto-u.ac.jp/~garrigue/papers/fose2000.html.

Goldberg, A. 1984. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley

Publishing Co., Reading, Mass.

Gosling, J., Joy, B., Steele, G., and Bracha, G. 2000. The Java Language Specification
Second Edition. The Java Series. Addison-Wesley, Boston, Mass.

Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Gribble, S., Anderson, T.,

Bershad, B., Borriello, G., and Wetherall, D. June 2001. Programming for pervasive
computing environments. Tech. Rep. UW-CSE-01-06-01, Department of Computer Science

and Engineering, University of Washington.

Grothoff, C. 2003. Walkabout revisited: The Runabout. In Proceedings of the 2003 Euro-
pean Conference on Object-Oriented Programming. LNCS 2743. Springer-Verlag, Darmstadt,

Germany.

Harrison, W. and Ossher, H. 1993. Subject-oriented programming (a critique of pure ob-
jects). In OOPSLA 1993 Conference Proceedings, A. Paepcke, Ed. ACM SIGPLAN Notices,

vol. 28(10). ACM, New York, NY, 411–428.

Hightower, J., Brumitt, B., and Borriello, G. 2002. The location stack: A layered model

for location in ubiquitous computing. In Proceedings of the 4th IEEE Workshop on Mobile
Computing Systems & Applications (WMCSA 2002). IEEE Computer Society Press, Callicoon,

NY, 22–28.

Ingalls, D. H. H. 1986. A simple technique for handling multiple polymorphism. In OOPSLA
’86 Conference Proceedings, N. Meyrowitz, Ed. ACM SIGPLAN Notices, vol. 21(11). ACM,

New York, NY, 347–349.

Keller, R. and Hölzle, U. 1998. Binary component adapatation. In ECOOP ’98–Object-
Oriented Programming, E. Jul, Ed. LNCS. Springer, New York, NY, 307–329.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. 2001.

An overview of AspectJ. In ECOOP 2001 — Object-Oriented Programming 15th European
Conference, Budapest Hungary, J. L. Knudsen, Ed. Lecture Notes in Computer Science, vol.

2072. Springer-Verlag, Berlin, 327–353.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and

Irwin, J. 1997. Aspect-oriented programming. In ECOOP ’97 — Object-Oriented Programming
11th European Conference, Jyväskylä, Finland, M. Akşit and S. Matsuoka, Eds. Lecture Notes

in Computer Science, vol. 1241. Springer-Verlag, New York, NY, 220–242.

Kopi 2004. Kopi project home page. http://www.dms.at/kopi.

Krishnamurthi, S., Felleisen, M., and Friedman, D. P. 1998. Synthesizing ojbect-oriented

and functional design to promote re-use. In ECOOP’98—Object-Oriented Programming, 12th

European Conference, Brussels, Belgium, E. Jul, Ed. Lecture Notes in Computer Science, vol.
1445. Springer-Verlag, New York, NY, 91–113.

Leavens, G. T. and Millstein, T. D. 1998. Multiple dispatch as dispatch on tuples. In OOPSLA

’98 Conference Proceedings. ACM SIGPLAN Notices, vol. 33(10). ACM, New York, NY, 374–
387.

Lee, K., LaMarca, A., and Chambers, C. 2003. HydroJ: Object-oriented pattern matching

for evolvable distributed systems. In Proceedings of the 2003 ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications. ACM SIGPLAN Notices, vol.

38(11). ACM, New York, NY, 205–223.

Liang, S. and Bracha, G. 1998. Dynamic class loading in the Java virtual machine. In OOPSLA

’98 Conference Proceedings. ACM SIGPLAN Notices, vol. 33(10). ACM, ACM, New York, NY,
36–44.

Lindholm, T. and Yellin, F. 2000. The Java Virtual Machine Specification, Second ed. Addison-

Wesley Publishing Co., Reading, MA.

Litvinov, V. 1998. Constraint-based polymorphism in Cecil: Towards a practical and static type

system. In OOPSLA ’98 Conference Proceedings. ACM SIGPLAN Notices, vol. 33(10). ACM,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

58 · Curtis Clifton et al.

New York, NY, 388–411. The proceedings mistakenly contain a preliminary version of the paper.

The final version is at ftp://ftp.cs.washington.edu/pub/chambers/sbp-oopsla.ps.gz.

Martin, P. 1998. Java, the good, the bad and the ugly. ACM SIGPLAN Notices 33, 4 (Apr.),
34–39.

McDirmid, S., Flatt, M., and Hsieh, W. 2001. Jiazzi: New-age components for old-fashioned

Java. In Proceedings of OOPSLA ’01 Conference on Object-Oriented Programming, Languages,

Systems, and Applications. SIGPLAN Notices, vol. 36(11). ACM, New York, NY, 211–222.

Millstein, T. 2003. Reconciling software extensibility with modular program reasoning. Ph.D.
thesis, Department of Computer Science & Engineering, University of Washington.

Millstein, T. 2004. Practical predicate dispatch. In Proceedings of the OOPSLA ’04 confer-

ence on Object Oriented Programming Systems Languages and Applications. ACM SIGPLAN

Notices, vol. 39(11). ACM, New York, NY, 345–364.

Millstein, T., Bleckner, C., and Chambers, C. 2002. Modular typechecking for hierarchically
extensible datatypes and functions. In Proceedings of the ACM SIGPLAN International Con-

ference on Functional Programming (ICFP ’02). ACM SIGPLAN Notices, vol. 37(9). ACM,

New York, NY, 110–122.

Millstein, T. and Chambers, C. 1999. Modular statically typed multimethods. In ECOOP ’99
— Object-Oriented Programming 13th European Conference, Lisbon Portugal, R. Guerraoui,

Ed. Lecture Notes in Computer Science, vol. 1628. Springer-Verlag, New York, NY, 279–303.

Millstein, T. and Chambers, C. 2002. Modular statically typed multimethods. Information

and Computation 175, 1 (May), 76–118.

Millstein, T., Reay, M., and Chambers, C. 2003. Relaxed MultiJava: Balancing extensibility
and modular typechecking. In Proceedings of the 2003 ACM Conference on Object-Oriented

Programming Systems, Languages, and Applications. ACM SIGPLAN Notices, vol. 38(11).

ACM, New York, NY, 224–240.

Mugridge, W. B., Hosking, J. G., and Hamer, J. 1991. Multi-methods in a statically-typed pro-
gramming language. In ECOOP ’91 Conference Proceedings, Geneva, Switzerland, P. America,

Ed. Lecture Notes in Computer Science, vol. 512. Springer-Verlag, New York, NY.

Nordberg, M. E. 1998. Default and extrinsic visitor. In Pattern Languages of Program Design

3, R. C. Martin, D. Riehle, and F. Buschmann, Eds. Addison-Wesley Publishing Co., Reading,
MA, 105–123.

Nystrom, N., Clarkson, M. R., and Myers, A. C. 2003. Polyglot: An extensible compiler

framework for java. In Proceedings of CC 2003: 12’th International Conference on Compiler

Construction. Springer-Verlag, New York, NY.

Odersky, M., Cremet, V., Röckl, C., and Zenger, M. 2003. A nominal theory of objects with
dependent types. In ECOOP 2003, European Conference on Object-Oriented Programming,

Darmstadt, Germany. Springer-Verlag, New York, NY, 201–224.

Odersky, M. and Wadler, P. 1997. Pizza into Java: Translating theory into practice. In

Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, New York, NY, 146–159.

Ossher, H. and Tarr, P. 2001. Using multidimensional separation of concerns to (re)shape

evolving software. Commun. ACM 44, 10 (Oct.), 43–50.

Paepcke, A. 1993. Object-Oriented Programming: The CLOS Perspective. The MIT Press,

Boston, Mass.

Palsberg, J. and Jay, C. B. 1998. The essence of the visitor pattern. In Proc. 22nd IEEE Int.
Computer Software and Applications Conf., COMPSAC. IEEE, Vienna, Austria, 9–15.

Parnas, D. L. 1972. On the criteria to be used in decomposing systems into modules. Commun.
ACM 15, 12 (Dec.), 1053–1058.

Parnas, D. L. 1975. Software engineering or methods for the multi-person construction of multi-

version programs. In Programming Methodology, 4th Informatik Symposium, IBM Germany,

Wildbad, 25-27 September, 1974, C. E. Hackl, Ed. Lecture Notes in Computer Science, vol. 23.
Springer-Verlag, New York, NY, 225–235.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

MultiJava · 59

Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D., Kautz, H., and

Hahnel, D. 2004. Inferring Activities from Interactions with Objects. Pervasive Computing
Magazine 3, 4, 10–17.

Rain 2004. Rain home page. http://seattleweb.intel-research.net/projects/rain.

Reynolds, J. C. 1975. User-defined types and procedural data structures as complementary

approaches to type abstraction. In New Directions in Algorithmic Languages, S. A. Schuman,
Ed. IRIA, Rocquencourt, 157–168.

Reynolds, J. C. 1980. Using category theory to design implicit conversions and generic operators.

In Semantics-Directed Compiler Generation, Proceedings of a Workshop, Aarhus, Denmark,

N. D. Jones, Ed. Lecture Notes in Computer Science, vol. 94. Springer-Verlag, New York, NY,
211–258.

Shalit, A. 1997. The Dylan Reference Manual: The Definitive Guide to the New Object-Oriented

Dynamic Language. Addison-Wesley, Reading, Mass.

Steele Jr., G. L. 1990. Common LISP: The Language, Second ed. Digital Press, Bedford, Mass.

Stroustrup, B. 1997. The C++ Programming Language: Third Edition. Addison-Wesley Pub-
lishing Co., Reading, Mass.

Tarr, P. L., Ossher, H., Harrison, W. H., and Sutton Jr., S. M. 1999. N degrees of sep-

aration: Multi-dimensional separation of concerns. In International Conference on Software
Engineering. ACM, New York, NY, 107–119.

Torgersen, M. 2004. The expression problem revisited: Four new solutions using generics. In

ECOOP ’04 - Object-Oriented Programming European Conference, M. Odersky, Ed. Lecture

Notes in Computer Science, vol. 3086. Springer-Verlag, New York, NY, 123–143.

Troelsen, A. 2003. C# and the .NET platform, 2nd ed. Apress, Berkeley, CA.

Vlissides, J. 1999. Visitor in frameworks. C++ Report 11, 10 (November/December), 40–46.

Zenger, M. and Odersky, M. 2001. Extensible algebraic datatypes with defaults. In Proceedings

of the Sixth ACM SIGPLAN International Conference on Functional Programming. ACM

SIGPLAN Notices, vol. 36(10). ACM, ACM, New York, NY, 241–252.

Zenger, M. and Odersky, M. 2005. Independently extensible solutions to the expression prob-

lem. In The 12th International Workshop on Foundations of Object-Oriented Languages

(FOOL 12). ACM, Long Beach, California.

Received January 2004; December 2004

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, December 2004.

