
Introducing PyLighter:
Dynamic Code Highlighter

Michael G. Boland and Curtis Clifton
Department of Computer Science and Software Engineering

Rose-Hulman Institute of Technology
5500 Wabash Ave.

Terre Haute, Indiana 47803-3999

{bolandmg, clifton}@rose-hulman.edu

ABSTRACT

Like a screenplay, a program is both a static artifact and in-
structions for a dynamic performance. This duality can keep
laypeople from appreciating the complexity of software sys-
tems and can be a stumbling block for novice programmers.
PyLighter lets laypeople and novice programmers perceive
the relationship between static Python code and its execu-
tion. PyLighter works with everything from simple console
applications to arcade-style games, and because PyLighter
is easy to adopt and use, instructors can integrate it into any
Python-based introductory course without changing the rest
of their syllabus.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education; K.3.1 [Computer Uses in
Education]: Computer-assisted instruction (CAI); D.2.5
[Testing and Debugging]: Monitors

General Terms

Algorithms, Experimentation, Human Factors, Languages

Keywords

PyLighter, CS1, software visualization, presentation tools,
Python

1. INTRODUCTION
Why don’t they appreciate us? Our school hosts a sum-

mer program for high school students to promote interest in
STEM disciplines. At the end of each session the students
present posters and demonstrations for visiting friends and
family members and each other. During the presentations
the students select a project as the “best in show.” Over
the 84 session history of the program, no Computer Science
project has ever been selected.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.

Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

During the 2008 presentations, we noticed that projects
with more tangible products, like the mechanical engineers’
hovercrafts and submarines, drew more attention than did
the games and web services developed by the Computer Sci-
ence students. With the more tangible products, what the
students worked on and what they presented were one and
the same. Visitors could appreciate the amount of effort in-
volved. We wondered how we might help people see the con-
nection between what our students worked on (their Python
code) and what they presented (its dynamic execution). Py-
Lighter is our first attempt to help make that connection.
We also hope that PyLighter will help novice programmers
refine their own understanding of this connection.

PyLighter is a program that simply highlights the lines of
Python source files as they are used by running code, in real
time and at full speed. By highlighting the lines of source
code associated with a particular dynamic behavior, we hope
that PyLighter will help laypeople and novice programmers
develop a model of the relationship between static code and
dynamic behavior. Also, because PyLighter introduces no
new graphical vocabulary, it should minimize the additional
cognitive load placed on students and be easy for instructors
to integrate with existing courses.

2. DESIGN
We had several design goals for PyLighter. It had to:

• be easy to install and use, so that it would not be just
another complication in our introductory courses;

• work with arbitrary Python programs, from simple con-
sole applications to arcade-style games, so it would
work in classroom, lab, and presentation environments;

• monitor programs at full speed so as not to detract
from the perceived quality of the programs; and

• allow users to slow down programs to explore the rela-
tionship between the static code and dynamic behav-
ior.

At its most basic, PyLighter presents a highlighted, scroll-
able display of a program’s source code. When the user
runs the program, PyLighter monitors it and highlights each
source line with a bright yellow background as it is reached.
The highlighting rapidly fades over time. The effect is that
hot spots in the program—code that is executed most fre-
quently or inside tight, long-running loops—tend to glow

Figure 1: A screen shot of PyLighter in action

brightly. Other code that is executed only occasionally will
pulse when the execution reaches it.

The basic highlighting mode is most useful for presenta-
tions involving graphical applications. One interesting ex-
ample is a version of Tetris that we have assigned in our CS1
course. Figure 1 shows a screen capture of PyLighter while
monitoring Tetris. The core of the running program is an
event loop that waits for a key press, then calls the appro-
priate method on a game piece object to tell the object to
move or rotate. It is compelling to see the control branching
within the loop body as different keys are pressed.

For monitoring console programs, PyLighter includes a
display showing any text printed by the program and an
input field where the user can respond to prompts.

PyLighter allows users to monitor programs that span
multiple files. It uses a familiar tabbed interface, as in Fire-
fox or more recent versions of Internet Explorer. A small
“light” on each tab intensifies to show how frequently code
in the corresponding file is being executed. A user can switch
between tabs to view the actual lines being highlighted in
any given file.

Besides the full-speed mode used for presentations, Py-
Lighter also provides a slowing slider. The slowing slider

adjusts the amount of delay introduced whenever a line of
the monitored program is reached. This delay is an exponen-
tial function ranging from no delay—full speed execution—
through a range of slow-motion displays. At its slowest, the
slider introduces “infinite” delay, a single-step mode like in a
traditional debugger. The slowing slider only applies to files
that the user has opened in PyLighter tabs. Other code, for
example in library modules, always runs at full speed.

In slow motion mode, PyLighter is an exploratory tool.
Rather than letting an instructor produce a “stock” ani-
mation of a predefined algorithm, PyLighter lets students
explore their own code. We hope that this lets students ac-
tively develop their own understanding of the relationship
between static source code and dynamic behavior.

2.1 Implementation
PyLighter is implemented in Python using the wxPython

windowing toolkit1 and the Processing package2. PyLighter
is open source software and is available from the second

1http://www.wxpython.org/
2http://pypi.python.org/pypi/processing

author’s web site3. PyLighter has been successfully tested
on Ubuntu Linux and Windows (both XP and Vista).

When launched PyLighter creates two processes: one for
its user interface and one to run the monitored program.
PyLighter attaches a small monitoring stub to the running
program. This monitoring stub runs in the same thread as
the monitored program. The standard Python interpreter
calls the monitoring stub once for each line of code in the
monitored program. If that line of code is of interest to
the PyLighter user interface (i.e., if the line occurs in a file
which is open in PyLighter), then the monitoring stub com-
municates the event to the user interface process. The user
interface process periodically collects these events and up-
dates the display.

2.2 Evaluation
PyLighter meets all of our design goals as detailed below.

2.2.1 Easy to Install and Use

A user can install PyLighter on Windows by download-
ing and running an installer application.4 To monitor a
program, the user launches PyLighter and opens the source
code of the program to be monitored. The user starts the
program by clicking a menu item or tool bar button.

PyLighter displays the input and output for console ap-
plications within the PyLighter window. To avoid changing
the behavior of graphical applications, they run in their own
windows while PyLighter monitors them.

Apart from controls to open and close files, start and
stop programs, and for console input and output, PyLighter
presents the user with just one other set of controls. The
user can control the program speed using the slowing slider.
Once the program has been slowed to a stop, the user can
single step through it by clicking a “step” button.

2.2.2 Works with Arbitrary Python Programs

PyLighter can visualize arbitrary programs, because un-
like Jeliot 3 and many other program visualization system
PyLighter does not need a custom interpreter to drive the vi-
sualization [12]. Instead, PyLighter’s monitoring stub gath-
ers execution information and communicates it to the Py-
Lighter user interface. Because the user interface runs in
a separate process, PyLighter is minimally invasive to the
monitored program. And because a custom interpreter is
not needed, PyLighter can monitor any program that runs
on the standard Python interpreter.

2.2.3 Monitors Programs at Full Speed

PyLighter’s lightweight monitoring architecture, with its
use of separate processes for monitoring and visualizing, also
helps PyLighter to monitor programs at nearly full speed.
A small amount of overhead is required to gather execution
information. In our testing this overhead was overwhelmed
by time spent on normal I/O for console applications. The
graphical applications that we tested, drawn from those used
in our summer program and in our CS1 course, included
built-in delays for rendering animation. Those delays also
served to mask the small overhead introduced by PyLighter.

3http://www.rose-hulman.edu/∼clifton/pylighter
4Installation on Unix variants currently requires download-
ing both the wxPython and Processing packages.

By running in a separate process, the PyLighter user in-
terface takes advantage of the multithreading capabilities of
modern operating systems and multicore processors.

The full-speed monitoring of PyLighter allows it to be
used during presentations without interfering with the per-
ceived quality of the monitored program.

2.2.4 Allows Users to Slow Down Programs

Because the PyLighter monitoring stub is executed in the
same thread as the monitored program, the stub can in-
troduce delays “between” each line of the program. The
duration of the delays controls the execution speed of the
program. Users can also activate a single-step mode where
the monitoring stub pauses until a “step” signal is received
from the PyLighter user interface. This provides single step-
ping as in a traditional debugger.

2.2.5 Summary

PyLighter’s minimalist feature set and its separation of a
small monitoring stub from the user interface allow the tool
to satisfy our four design goals. PyLighter is easy to use and
lets users monitor arbitrary Python programs at full speed
or in slow motion.

3. DISCUSSION AND FUTURE WORK
PyLighter meets our design goals; however, we have not

yet formally evaluated its effectiveness as an educational
tool. Students who have seen demonstrations of PyLighter
are excited about it, so we wanted to share it with the com-
munity as quickly as possible. We look forward to evaluating
the tool more formally in the coming school year.

We plan to conduct two sorts of studies. One sort will
focus on whether PyLighter is a useful active learning tool
for students to develop their ability to predict the dynamic
behavior of static code. The other sort of study will focus
on whether PyLighter can help non-programmers appreciate
the complexity of software systems. We would be very inter-
ested in collaborating on these studies and invite colleagues
at other institutions to contact us.

We hypothesize that the source-text-only representation
provided by PyLighter may be more helpful to beginners
than more complex visualizations, such as those provided
by Jeliot [12]. Jeliot displays both a highlighted source code
representation and a dynamic object diagram, potentially
leading to a “split-attention” problem [20]. The work of
Nevalainen and Sajaniemi lends some support for our hy-
pothesis. They found that graphical representations were
not always helpful, and that augmented text alone can pro-
vide most of the benefit of a more advanced visualization
system [13].

Other future work includes improvements to the tool it-
self. For example, highlighting of multithreaded programs
does not distinguish between threads. Perhaps multiple col-
ors could be used to do so. Because our summer program
and CS1 course do not introduce multithreading, this fea-
ture has been left for future work.

There are other features that might be added to PyLighter
based on the prior work on program visualization noted be-
low. Examples include breakpoints, a variable browser, and
visualization of the dynamic object graph. On the other
hand, each additional feature would add complexity to the
program, potentially placing obstacles in the way of novice
programmers.

4. RELATED WORK
PyLighter is related to work on both algorithm and pro-

gram visualization. We also review work on the educational
effectiveness of software visualization tools.

4.1 Algorithm Visualization
There is a large body of work on algorithm visualization

focused on learning about predefined algorithms. The field
was initiated by Baecker with his film Sorting Out Sorting
[1]. Brown and Sedgewick did the seminal work on real-time
animation of running algorithms [5, 6]. Algorithm visualiza-
tion using graphical abstractions has been a fruitful research
area, but as Shaffer et al. recently noted, production of such
animations seems to have slowed [17].

Algorithm visualizations primarily promote understand-
ing of given algorithms. Our work has two different moti-
vations. First, PyLighter is intended to help students bet-
ter understand the relationship between program behavior
and source code in algorithms that they have developed
themselves. Second, we hope that PyLighter can help non-
programmers to better appreciate the inherent structure and
complexity of software.

4.2 Program Visualization
Besides the work on algorithm visualization, there has

also been significant work on visualizing program execution.
Much of this work is targeted at helping experienced pro-
grammers understand and debug complex programs [14].
We focus here on work that, like PyLighter, is targetted
at novice programmers.

Important early work in this area includes DYNAMOD
and DynaLab, which allowed the visualization of Pascal pro-
grams [4, 15]. DYNAMOD included techniques now pop-
ular in graphical debuggers, such as single-step execution
and live display of variable values. DynaLab was a follow-
up project that added reversible execution via a virtual-
ization mechanism called the “Education Machine”. Dy-
naLab also supported examples in multiple programming
languages, though it seems only Pascal was ever fully im-
plemented. DYNAMOD and DynaLab execute predefined
programs chosen for their pedagogical efficacy. PyLighter,
on the other hand, is capable of executing arbitrary code.

The work on the Jeliot family of tools is more directly
related to PyLighter [3]. The most recent member of the
family, Jeliot 3, is a data and control flow visualization tool
for Java [12]. It is focused on helping students develop a
conceptual understanding of objects and assignment. As
such, it provides animated graphical representations akin
to many algorithm visualization tools. In PyLighter, our
primary goal is to help students and laypeople appreciate the
relationship between static program text and its dynamic
behavior.

As noted in Section 2.2.2, Jeliot 3 uses its own Java inter-
preter to execute programs and generate visualizations. The
interpreter provides more generality than basic algorithm
visualization tools, but is not capable of executing all Java
programs. In particular, it cannot execute programs that
use generic types or the Swing API. While the visualiza-
tion provided by PyLighter is more limited, PyLighter can
work with user programs using the entirety of the Python
language and libraries. PyLighter can also run programs
at full speed for presentation purposes, unlike Jeliot 3. Be-
cause PyLighter does not introduce a new “graphical and

verbal vocabulary”, as Jeliot 3 does, PyLighter can be read-
ily adopted into any teaching environment without rework-
ing other course materials [11].

Laakso et al. presented a tool called ViLLE for stepping
forward and backward through simple programs, visualiz-
ing variables and the call stack, and comparing the same
algorithm executing in different languages [10]. The tool
lets users define mappings between the syntax of various
core languages, including Java, and C++, and a subset of
Python. ViLLE can show side-by-side execution of an al-
gorithm in two languages to reinforce that programming
concepts are more general than the syntax of a given lan-
guage. Like Jeliot 3, ViLLE is not able to visualize all pro-
grams in the target languages and does not perform dynamic
highlighting of programs running at full speed. Unlike Py-
Lighter, ViLLE does not support slow motion viewing.

Other tools to help novices visualize arbitrary programs
include one by Jiménez-Peris et al. for functional programs;
their tool focuses on functional term rewriting [9]. Sangwan
et al. developed a system for C++ that is similar to Jeliot
[16]. Their system requires that the user change type an-
notations in source code and seems to be limited to data
structures over integers.

4.3 Educational Effectiveness
The literature on the educational effectiveness of software

visualization tools reports mixed results. The early work by
Stasko et al. found that the algorithm animations studied
only marginally improved learning [18]. Hundhausen et al.
presented the results of a meta-study of algorithm visualiza-
tion (AV) effectiveness, and provide a comprehensive review
of the literature through 2002 [8]. Their results support a
cognitive constructivist theory of learning [2]. They found
that “how students use AV technology has a greater impact
on effectiveness than what AV technology shows them.”

Tudoreanu examined an approach to algorithm visualiza-
tion that reduces “cognitive load” in order to maximize ef-
fectiveness [19]. PyLighter’s simple textual display shares
this conceptual approach.

The study by Byrne et al. focused on the benefits of hav-
ing students predict the next step in an algorithm [7]. Their
study compared animated versus static visualizations and
predictive versus non-predictive use by the students. The
study found benefit from having students predict the be-
havior of the algorithm, but found no additional benefit for
animated visualization apart from those accrued by predic-
tion.

PyLighter’s slowing slider lets students interact with run-
ning programs in a unique way. We hope that this active
engagement will lead to measurable education benefits.

5. CONCLUSIONS
PyLighter is a simple but powerful tool for displaying the

relationship between static source code and running pro-
grams.

PyLighter’s minimalist design means that instructors can
incorporate it into any Python-based introductory course.
Instructors do not have to introduce another notation that
may be at odds with other course materials. As far as we
know, PyLighter is the first Python program visualization
tool for novices.

Unlike graphical debuggers, such as those embedded in
Eclipse or IDLE, PyLighter is simple enough that students

can begin using it from the beginning of their programming
experiences. The slowing slider allows users to tune the
execution speed of a program to observe interesting events
without having to single step as in traditional debuggers.

Unlike many visualization systems, PyLighter allows stu-
dents to visualize their own code, rather than just algorithms
provided by the instructor. PyLighter also allows students
to monitor arbitrary programs, not just those supported by
a custom interpreter. Because PyLighter can monitor pro-
grams at full speed, it can be used in presentations to help
laypeople appreciate software complexity.

We hope that PyLighter’s ease of installation and use will
help other instructors try it in their courses. We look for-
ward to conducting studies to formally evaluate PyLighter’s
effectiveness and invite others to join us in that work.

6. ACKNOWLEDGEMENTS
We thank the reviewers for their helpful direction. The

work of both authors work was supported in part by the US
National Science Foundation under grant CCF-0707701.

References

[1] R. M. Baecker. Sorting out sorting. Shown at
SIGGRAPH’81, 1981.

[2] M. Ben-Ari. Constructivism in computer science
education. J. of Computers in Mathematics and
Science Teaching, 20(1):45–73, 2001.

[3] M. Ben-Ari, N. Myller, E. Sutinen, and J. Tarhio.
Perspectives on program animation with Jeliot. In
S. Diehl, editor, Lecture Notes in Computer Science,
volume 2269, pages 31–43. Springer-Verlag, 2002.

[4] C. M. Boroni, T. J. Eneboe, F. W. Goosey, J. A.
Ross, and R. J. Ross. Dancing with DynaLab:
endearing the science of computing to students. In
SIGCSE ’96: Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer science
education, pages 135–139, New York, NY, USA, 1996.
ACM. ISBN 0-89791-757-X.

[5] M. H. Brown. Algorithm animation. PhD thesis,
Brown University, Providence, RI, USA, 1987.

[6] M. H. Brown and R. Sedgewick. A system for
algorithm animation. SIGGRAPH Comput. Graph.,
18(3):177–186, 1984. ISSN 0097-8930.

[7] M. D. Byrne, R. Catrambone, and J. T. Stasko.
Evaluating animations as student aids in learning
computer algorithms. Comput. Educ., 33(4):253–278,
1999. ISSN 0360-1315.

[8] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing, 13(3):
259–290, June 2002.

[9] R. Jiménez-Peris, C. Pareja-Flores, n.-M. Marta Pati
and J. A. Velázquez-Iturbide. Graphical visualization
of the evaluation of functional programs. In ITiCSE
’96: Proceedings of the 1st conference on Integrating
technology into computer science education, pages
36–38, New York, NY, USA, 1996. ACM.

[10] M.-J. Laakso, E. Kaila, T. Rajala, and T. Salakoski.
Define and visualize your first programming language.
In ICALT ’08: Proceedings of the 2008 Eighth IEEE
International Conference on Advanced Learning
Technologies, pages 324–326, Washington, DC, USA,
2008. IEEE Computer Society.

[11] R. B.-B. Levy and M. Ben-Ari. We work so hard and
they don’t use it: acceptance of software tools by
teachers. In ITiCSE ’07: Proceedings of the 12th
annual SIGCSE conference on Innovation and
technology in computer science education, pages
246–250, New York, NY, USA, 2007. ACM.

[12] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing programs with Jeliot 3. In AVI ’04:
Proceedings of the working conference on Advanced
visual interfaces, pages 373–376, New York, NY, USA,
2004. ACM. ISBN 1-58113-867-9.

[13] S. Nevalainen and J. Sajaniemi. An experiment on
short-term effects of animated versus static
visualization of operations on program perception. In
ICER ’06: Proceedings of the 2006 international
workshop on Computing education research, pages
7–16, New York, NY, USA, 2006. ACM.

[14] P. Romero, R. Cox, B. du Boulay, and R. Lutz. A
survey of external representations employed in
object-oriented programming environments. Journal
of Visual Languages and Computing, 14(5):387–419,
Oct 2003.

[15] R. J. Ross. Experience with the DYNAMOD program
animator. SIGCSE Bull., 23(1):35–42, 1991.

[16] R. S. Sangwan, J. F. Korsh, and P. S. LaFollette, Jr.
A system for program visualization in the classroom.
In SIGCSE ’98: Proceedings of the twenty-ninth
SIGCSE technical symposium on Computer science
education, pages 272–276, New York, NY, USA, 1998.
ACM. ISBN 0-89791-994-7.

[17] C. A. Shaffer, M. Cooper, and S. H. Edwards.
Algorithm visualization: a report on the state of the
field. In SIGCSE ’07: Proceedings of the 38th SIGCSE
technical symposium on Computer science education,
pages 150–154, New York, NY, USA, 2007. ACM.
ISBN 1-59593-361-1.

[18] J. Stasko, A. Badre, and C. Lewis. Do algorithm
animations assist learning?: an empirical study and
analysis. In INTERCHI ’93: Proceedings of the
INTERCHI ’93 conference on Human factors in
computing systems, pages 61–66, Amsterdam, The
Netherlands, The Netherlands, 1993. IOS Press. ISBN
90-5199-133-9.

[19] M. E. Tudoreanu. Designing effective program
visualization tools for reducing user’s cognitive effort.
In SoftVis ’03: Proceedings of the 2003 ACM
symposium on Software visualization, pages 105–114,
New York, NY, USA, 2003. ACM. ISBN
1-58113-642-0.

[20] M. Ward and J. Sweller. Structuring effective worked
examples. Cognition and Instruction, 7(1):1–39,
March 1990.

