
CFG Experimenter
This is an individual assignment, not a team assignment.

Your task is to implement the key algorithms used in LL(1) and LR(1) parser generators.
You’ll do this within a skeleton of the CFGExperimenter project that Brian Kelley and I de-
veloped.

The project is intended to be completed using Eclipse with the CUP/JFlex plug-in. You may
use other development environments, though I wouldn’t suggest doing so. Instructions on
installing the CUP/JFlex plug-in are available here:

http://www.rose-hulman.edu/class/csse/csse404/Handouts/CUPLEX.html

I’ve created individual repositories for each of you at the following URL:

http://svn.csse.rose-hulman.edu/repos/csse404-201030-username

where username is your Rose-Hulman user name. You should add that repository location to
Eclipse (using the SVN Repository Exploring view). You should then be able to check out the
CFGExperimenter project into your Eclipse workspace.

Once you’ve checked out the project, use Window → Views to add the Tasks view (as opposed
to the Mylyn Task List view). Within the Tasks view you should see the ToDo items listed
below. You can double click on an item in the Tasks view to jump to the code.

PHASE 1
1. Construct Nullable Nonterminals

2. Construct First Sets

3. Construct the Follow Sets

4. Build the LL(1) Parser Table

5. Decide if the grammar is LL(1) Parseable

6. Implement the LL(1) Parsing Loop — parsing animation should work at this stage

PHASE 2
7. Implement Closure Algorithm

8. Implement Goto Algorithm

9. Construct the Canonical Collection

10. Populate Action and Goto Tables

Curt Clifton% CSSE404 – Compiler Construction

% – 1 –

11. Implement the LR(1) Parsing Algorithm — parsing animation should work at this stage

For the most part, the tasks must be completed in the order listed as subsequent tasks
are dependent on prior ones. We’ve included all the fields and classes that we used in our
solution, but stripped out the key algorithms. You’ll need to study the program to deter-
mine what data types we expect, but you won’t need to create any new fields or
classes. Variable, method, and field names in our code are chosen to correspond closely to
the algorithms given chapter 3 of Engineering a Compiler, by Cooper and Torczon. Open
your textbook before you start coding!

TESTING
Unit tests are included for all of the algorithms. Right-click on the project in the Project Ex-
plorer view and choose Run As → JUnit Test to run all the unit tests for the project.

Several sample grammars for your use are included in tests → edu.roseHulman.cfg. Among
these is cfgGrammarExample which gives the grammar of grammars and includes comments
about them. The file solution.jar in the project is a working version of the program so you
can compare your output to ours. Just double-click the jar file to run it. You shouldn’t at-
tempt to reverse engineer the jar file. Doing so would violate the spirit of the assignment
and is likely to be more work that just writing the algorithms yourself.

QUESTIONS
This project includes a lot of provided code. Please ask questions about it.

SUBMISSION
Submit your solution by committing it to your Subversion repository by midnight on each
milestone deadline.

Curt Clifton% CSSE404 – Compiler Construction

% – 2 –

